Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
from tencentpretrain.utils.misc import pooling | |
class ClsTarget(nn.Module): | |
""" | |
Classification Target | |
""" | |
def __init__(self, args, vocab_size): | |
super(ClsTarget, self).__init__() | |
self.vocab_size = vocab_size | |
self.hidden_size = args.hidden_size | |
self.pooling_type = args.pooling | |
self.linear_1 = nn.Linear(args.hidden_size, args.hidden_size) | |
self.linear_2 = nn.Linear(args.hidden_size, args.labels_num) | |
self.softmax = nn.LogSoftmax(dim=-1) | |
self.criterion = nn.NLLLoss() | |
def forward(self, memory_bank, tgt, seg): | |
""" | |
Args: | |
memory_bank: [batch_size x seq_length x hidden_size] | |
tgt: [batch_size] | |
Returns: | |
loss: Classification loss. | |
correct: Number of sentences that are predicted correctly. | |
""" | |
output = pooling(memory_bank, seg, self.pooling_type) | |
output = torch.tanh(self.linear_1(output)) | |
logits = self.linear_2(output) | |
loss = self.criterion(self.softmax(logits), tgt) | |
correct = self.softmax(logits).argmax(dim=-1).eq(tgt).sum() | |
return loss, correct | |