""" This script provides an example to wrap TencentPretrain for NER inference. """ import sys import os import argparse import json import torch import torch.nn as nn tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) sys.path.append(tencentpretrain_dir) from tencentpretrain.utils.config import load_hyperparam from tencentpretrain.utils.constants import * from tencentpretrain.utils.tokenizers import * from tencentpretrain.model_loader import load_model from tencentpretrain.opts import infer_opts from finetune.run_ner import NerTagger def read_dataset(args, path): dataset, columns = [], {} with open(path, mode="r", encoding="utf-8") as f: for line_id, line in enumerate(f): if line_id == 0: for i, column_name in enumerate(line.rstrip("\r\n").split("\t")): columns[column_name] = i continue line = line.rstrip("\r\n").split("\t") text_a = line[columns["text_a"]] src = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_a)) seg = [1] * len(src) if len(src) > args.seq_length: src = src[:args.seq_length] seg = seg[:args.seq_length] PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0] while len(src) < args.seq_length: src.append(PAD_ID) seg.append(0) dataset.append([src, seg]) return dataset def batch_loader(batch_size, src, seg): instances_num = src.size()[0] for i in range(instances_num // batch_size): src_batch = src[i * batch_size : (i + 1) * batch_size, :] seg_batch = seg[i * batch_size : (i + 1) * batch_size, :] yield src_batch, seg_batch if instances_num > instances_num // batch_size * batch_size: src_batch = src[instances_num // batch_size * batch_size :, :] seg_batch = seg[instances_num // batch_size * batch_size :, :] yield src_batch, seg_batch def main(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) infer_opts(parser) parser.add_argument("--vocab_path", default=None, type=str, help="Path of the vocabulary file.") parser.add_argument("--spm_model_path", default=None, type=str, help="Path of the sentence piece model.") parser.add_argument("--label2id_path", type=str, required=True, help="Path of the label2id file.") parser.add_argument("--crf_target", action="store_true", help="Use CRF loss as the target function or not, default False.") args = parser.parse_args() # Load the hyperparameters of the config file. args = load_hyperparam(args) with open(args.label2id_path, mode="r", encoding="utf-8") as f: l2i = json.load(f) print("Labels: ", l2i) l2i["[PAD]"] = len(l2i) i2l = {} for key, value in l2i.items(): i2l[value] = key args.l2i = l2i args.labels_num = len(l2i) # Load tokenizer. args.tokenizer = SpaceTokenizer(args) # Build sequence labeling model. model = NerTagger(args) model = load_model(model, args.load_model_path) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) if torch.cuda.device_count() > 1: print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) model = torch.nn.DataParallel(model) instances = read_dataset(args, args.test_path) src = torch.LongTensor([ins[0] for ins in instances]) seg = torch.LongTensor([ins[1] for ins in instances]) instances_num = src.size(0) batch_size = args.batch_size print("The number of prediction instances: ", instances_num) model.eval() with open(args.prediction_path, mode="w", encoding="utf-8") as f: f.write("pred_label" + "\n") for i, (src_batch, seg_batch) in enumerate(batch_loader(batch_size, src, seg)): src_batch = src_batch.to(device) seg_batch = seg_batch.to(device) with torch.no_grad(): _, pred = model(src_batch, None, seg_batch) # Storing sequence length of instances in a batch. seq_length_batch = [] for seg in seg_batch.cpu().numpy().tolist(): for j in range(len(seg) - 1, -1, -1): if seg[j] != 0: break seq_length_batch.append(j+1) pred = pred.cpu().numpy().tolist() for j in range(0, len(pred), args.seq_length): for label_id in pred[j: j + seq_length_batch[j // args.seq_length]]: f.write(i2l[label_id] + " ") f.write("\n") if __name__ == "__main__": main()