""" This script provides an example to wrap TencentPretrain for text-to-text inference. """ import sys import os import random import argparse import torch tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) sys.path.append(tencentpretrain_dir) from tencentpretrain.utils.constants import * from tencentpretrain.utils import * from tencentpretrain.utils.config import load_hyperparam from tencentpretrain.utils.vocab import Vocab from tencentpretrain.model_loader import load_model from tencentpretrain.opts import infer_opts, tokenizer_opts from finetune.run_text2text import Text2text from inference.run_classifier_infer import batch_loader def read_dataset(args, path): dataset, columns = [], {} with open(path, mode="r", encoding="utf-8") as f: for line_id, line in enumerate(f): if line_id == 0: for i, column_name in enumerate(line.rstrip("\r\n").split("\t")): columns[column_name] = i continue line = line.rstrip("\r\n").split("\t") if "text_b" in columns: text = line[columns["text_a"]] + SEP_TOKEN + line[columns["text_b"]] else: text = line[columns["text_a"]] src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text) + [SEP_TOKEN]) seg = [1] * len(src) if len(src) > args.seq_length: src = src[: args.seq_length] seg = seg[: args.seq_length] PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0] while len(src) < args.seq_length: src.append(PAD_ID) seg.append(0) dataset.append((src, seg)) return dataset def main(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) infer_opts(parser) tokenizer_opts(parser) parser.add_argument("--tgt_seq_length", type=int, default=32, help="Output sequence length.") args = parser.parse_args() # Load the hyperparameters from the config file. args = load_hyperparam(args) # Build tokenizer. args.tokenizer = str2tokenizer[args.tokenizer](args) # Build classification model. model = Text2text(args) model = load_model(model, args.load_model_path) args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(args.device) if torch.cuda.device_count() > 1: print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) model = torch.nn.DataParallel(model) dataset = read_dataset(args, args.test_path) src = torch.LongTensor([sample[0] for sample in dataset]) seg = torch.LongTensor([sample[1] for sample in dataset]) batch_size = args.batch_size instances_num = src.size()[0] print("The number of prediction instances: ", instances_num) model.eval() with open(args.prediction_path, mode="w", encoding="utf-8") as f: f.write("label") f.write("\n") for i, (src_batch, seg_batch) in enumerate(batch_loader(batch_size, src, seg)): src_batch = src_batch.to(args.device) seg_batch = seg_batch.to(args.device) tgt_in_batch = torch.zeros(src_batch.size()[0], 1, dtype = torch.long, device = args.device) tgt_seg_batch = torch.ones(tgt_in_batch.size()[0], 1, dtype = torch.long, device = args.device) current_batch_size = tgt_in_batch.size()[0] for j in range(current_batch_size): tgt_in_batch[j][-1] = args.tokenizer.vocab.get(CLS_TOKEN) with torch.no_grad(): memory_bank = model(src_batch, None, seg_batch, tgt_seg_batch, only_use_encoder=True) for _ in range(args.tgt_seq_length): with torch.no_grad(): outputs = model(src_batch, (tgt_in_batch, None, src_batch), None, tgt_seg_batch, memory_bank=memory_bank) next_token_logits = outputs[:, -1] next_tokens = torch.argmax(next_token_logits, dim=1).unsqueeze(1) tgt_in_batch = torch.cat([tgt_in_batch, next_tokens], dim=1) tgt_seg_batch = torch.ones(tgt_in_batch.size()[0], tgt_in_batch.size()[1], dtype=torch.long, device=args.device) for j in range(len(outputs)): f.write("".join([args.tokenizer.inv_vocab[token_id.item()] for token_id in tgt_in_batch[j][1:]]) .split(SEP_TOKEN)[0]) f.write("\n") if __name__ == "__main__": main()