from __future__ import annotations import gradio as gr import pandas as pd import os from typing import Optional, Iterable import sys from pathlib import Path from gradio.themes.base import Base from gradio.themes.utils import colors, fonts, sizes from augini import Augini # Create custom dark theme class AuginiDarkTheme(Base): def __init__( self, *, primary_hue: colors.Color | str = colors.indigo, secondary_hue: colors.Color | str = colors.indigo, neutral_hue: colors.Color | str = colors.gray, spacing_size: sizes.Size | str = sizes.spacing_md, radius_size: sizes.Size | str = sizes.radius_lg, text_size: sizes.Size | str = sizes.text_md, font: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("Inter"), "ui-sans-serif", "sans-serif", ), ): super().__init__( primary_hue=primary_hue, secondary_hue=secondary_hue, neutral_hue=neutral_hue, spacing_size=spacing_size, radius_size=radius_size, text_size=text_size, font=font, ) self.name = "augini_dark" self.set( # Dark theme colors body_background_fill="*neutral_950", body_text_color="*neutral_200", background_fill_primary="*neutral_900", background_fill_secondary="*neutral_800", border_color_primary="*neutral_700", # Components block_background_fill="*neutral_900", block_border_color="*neutral_700", block_border_width="1px", block_label_background_fill="*neutral_900", block_label_text_color="*neutral_200", block_title_text_color="*neutral_200", # Buttons button_primary_background_fill="*primary_600", button_primary_background_fill_hover="*primary_500", button_primary_text_color="white", button_secondary_background_fill="*neutral_700", button_secondary_background_fill_hover="*neutral_600", button_secondary_text_color="*neutral_200", # Inputs input_background_fill="*neutral_800", input_background_fill_focus="*neutral_800", input_border_color="*neutral_700", input_border_color_focus="*primary_500", input_placeholder_color="*neutral_500", # Shadows and effects shadow_spread="1px", block_shadow="0 1px 2px 0 rgb(0 0 0 / 0.05)", button_shadow="0 1px 2px 0 rgb(0 0 0 / 0.05)", ) class AuginiChat: def __init__(self, model: str, temperature: float = 0.7): self.df: Optional[pd.DataFrame] = None self.model = model self.temperature = temperature # Initialize Augini with the API key directly self.augini = Augini( api_key=os.environ.get('OPENROUTER_TOKEN'), use_openrouter=True, model=self.model, temperature=self.temperature, max_tokens=1500, ) def upload_file(self, file) -> str: """Handle file upload and return preview""" try: if file is None: return "Please upload a file" file_path = file.name file_extension = os.path.splitext(file_path)[1].lower() # Read the file based on its extension if file_extension == '.csv': self.df = pd.read_csv(file_path) elif file_extension in ['.xlsx', '.xls']: self.df = pd.read_excel(file_path) else: return "❌ Unsupported file format. Please upload a CSV or Excel file." return "✅ File uploaded successfully!" except Exception as e: return f"❌ Error uploading file: {str(e)}" def chat_with_data(self, message: str, history: list) -> tuple[str, list]: """Process chat messages and return responses""" try: if not message or message.strip() == "": return "", history if self.df is None: return "", history + [(message, "⚠️ Please upload a CSV file first.")] # Get response from Augini response = self.augini.chat(message, self.df) # Update history and clear the message new_history = history + [(message, response)] return "", new_history except Exception as e: error_msg = f"❌ Error processing message: {str(e)}" return "", history + [(message, error_msg)] def update_model_settings(self, model_name: str, temperature: float) -> None: """Update the model settings and reinitialize Augini.""" self.model = model_name self.temperature = temperature self.augini = Augini( api_key=os.environ.get('OPENROUTER_TOKEN'), use_openrouter=True, model=self.model, temperature=self.temperature, ) def create_app(): # Initialize the chat handler with default settings chat_handler = AuginiChat(model='openai/gpt-4o-mini', temperature=0.7) # JavaScript to force dark theme - added to head dark_mode_script = """ """ available_models = [ "mistralai/mistral-nemo", "meta-llama/llama-3.3-70b-instruct", "qwen/qwen-2.5-72b-instruct", "openai/gpt-4o-mini", "meta-llama/llama-3.2-3b-instruct", ] # Create the Gradio interface with dark theme script in head with gr.Blocks(head=dark_mode_script) as app: gr.Markdown(""" # 🤖 **augini** - your tabular AI data analysis assistant **augini** is an agentic AI system designed to help you analyze and understand your data through natural conversation. Upload your data file and start chatting to uncover insights! > 💡 **Tip**: Ask questions about patterns, relationships, or any aspect of your data. **augini** will provide detailed, evidence-based answers. """, elem_classes=["center-content"]) with gr.Accordion("⚙️ Model Settings", open=False): model_dropdown = gr.Dropdown( label="Select Model", choices=available_models, value="openai/gpt-4o-mini" ) temperature_slider = gr.Slider( label="Temperature", minimum=0.0, maximum=1.0, value=0.7, step=0.05 ) def update_settings(model_name, temperature): chat_handler.update_model_settings(model_name, temperature) return f"Model settings updated: {model_name}, Temperature: {temperature}" update_button = gr.Button("Update Model Settings") update_status = gr.Textbox(label="Update Status", interactive=False) update_button.click( update_settings, inputs=[model_dropdown, temperature_slider], outputs=[update_status] ) with gr.Row(elem_classes=["container"]): # Left sidebar for file upload with gr.Column(scale=1, elem_classes=["sidebar"]): gr.Markdown("### 📁 upload your data") file_upload = gr.File( label="Upload Data File", file_types=[".csv", ".xlsx", ".xls"], elem_classes=["file-upload"] ) file_status = gr.Textbox( label="Upload Status", interactive=False, elem_classes=["status-box"] ) # Main chat area with gr.Column(scale=3, elem_classes=["main-content"]): chatbot = gr.Chatbot( label="Chat History", height=500, elem_classes=["chat-window"] ) with gr.Row(): msg = gr.Textbox( label="your question", placeholder="ask me anything about your data...", lines=2, scale=4, elem_classes=["question-input"] ) submit_btn = gr.Button("send 📤", scale=1, elem_classes=["submit-btn"]) clear = gr.Button("clear chat 🗑️", elem_classes=["clear-btn"]) # Examples and Documentation in a collapsible section with gr.Accordion("📚 examples & features", open=False, elem_classes=["docs-section"]): with gr.Row(): with gr.Column(scale=1): gr.Markdown(""" ### 🎯 example questions **data overview** - "what are the key patterns in this dataset?" - "give me a summary of the main statistics" **data quality** - "are there any missing values?" - "how clean is this dataset?" **relationships** - "show me the correlations between columns" - "what variables are most related?" **deep analysis** - "what insights can you find about [column]?" - "is this a synthetic dataset?" """) with gr.Column(scale=1): gr.Markdown(""" ### ✨ features **smart analysis** - advanced statistical analysis - pattern recognition - anomaly detection **data support** - csv files - excel files (.xlsx, .xls) - automatic type detection **ai capabilities** - natural language understanding - context-aware responses - evidence-based insights """) # Add powered by link gr.Markdown("""
powered by tabularis.ai
""", elem_classes=["footer"]) # Set up event handlers file_upload.upload( chat_handler.upload_file, inputs=[file_upload], outputs=[file_status] ) # Add both message submission methods msg.submit( chat_handler.chat_with_data, inputs=[msg, chatbot], outputs=[msg, chatbot] ) submit_btn.click( chat_handler.chat_with_data, inputs=[msg, chatbot], outputs=[msg, chatbot] ) clear.click(lambda: ([], None), None, [chatbot, msg], queue=False) return app if __name__ == "__main__": app = create_app() app.launch(share=True)