Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
import torch
|
4 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
5 |
+
from sentence_transformers import SentenceTransformer, util
|
6 |
+
|
7 |
+
# Load dataset
|
8 |
+
with open("data/gpt2_ready_filtered.jsonl", "r", encoding="utf-8") as f:
|
9 |
+
data = [json.loads(line) for line in f]
|
10 |
+
|
11 |
+
texts = [item["text"] for item in data]
|
12 |
+
|
13 |
+
# SomaliQA class
|
14 |
+
class SomaliQA:
|
15 |
+
def __init__(self, dataset_texts):
|
16 |
+
self.texts = dataset_texts
|
17 |
+
self.embedder = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
18 |
+
self.embeddings = self.embedder.encode(self.texts, convert_to_tensor=True)
|
19 |
+
self.tokenizer = GPT2Tokenizer.from_pretrained("zakihassan04/gpt2-finetuned-somali")
|
20 |
+
self.model = GPT2LMHeadModel.from_pretrained("zakihassan04/gpt2-finetuned-somali")
|
21 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
22 |
+
|
23 |
+
def extract_qa(self, text):
|
24 |
+
parts = text.split("\nJawaab:")
|
25 |
+
if len(parts) == 2:
|
26 |
+
return parts[0].replace("Su'aal:", "").strip(), parts[1].strip()
|
27 |
+
return None, None
|
28 |
+
|
29 |
+
def answer(self, user_question):
|
30 |
+
if not user_question.strip().endswith("?"):
|
31 |
+
user_question += "?"
|
32 |
+
|
33 |
+
cleaned_question = user_question.strip().rstrip("?")
|
34 |
+
|
35 |
+
# Step 1: Exact match
|
36 |
+
for text in self.texts:
|
37 |
+
su_aal, jawaab = self.extract_qa(text)
|
38 |
+
if su_aal and cleaned_question.lower() == su_aal.lower():
|
39 |
+
return jawaab # ✅ Return exact answer from dataset
|
40 |
+
|
41 |
+
# Step 2: Semantic match
|
42 |
+
user_emb = self.embedder.encode(cleaned_question, convert_to_tensor=True)
|
43 |
+
hits = util.semantic_search(user_emb, self.embeddings, top_k=1)
|
44 |
+
if hits and len(hits[0]) > 0:
|
45 |
+
idx = hits[0][0]['corpus_id']
|
46 |
+
su_aal, jawaab = self.extract_qa(self.texts[idx])
|
47 |
+
return jawaab # ✅ Return answer from dataset (not generated)
|
48 |
+
|
49 |
+
return "Ma helin jawaab ku habboon su’aashaada."
|
50 |
+
|
51 |
+
# Init model
|
52 |
+
qa_system = SomaliQA(texts)
|
53 |
+
|
54 |
+
# Gradio UI
|
55 |
+
def qa_interface(question):
|
56 |
+
return qa_system.answer(question)
|
57 |
+
|
58 |
+
# Gradio interface
|
59 |
+
gr.Interface(
|
60 |
+
fn=qa_interface,
|
61 |
+
inputs="text",
|
62 |
+
outputs="text",
|
63 |
+
title="Somali QA Chatbot (Dataset-based)",
|
64 |
+
description="Weydii su’aal la xiriirta beeralayda — jawaabta waxa laga soo saaraa dataset-kaaga (GPT2 fine-tuned).",
|
65 |
+
theme="compact"
|
66 |
+
).launch()
|