Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchaudio
|
3 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
model = Wav2Vec2ForCTC.from_pretrained("tacab/tacab_asr_somali")
|
7 |
+
processor = Wav2Vec2Processor.from_pretrained("tacab/tacab_asr_somali")
|
8 |
+
|
9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
model.to(device)
|
11 |
+
|
12 |
+
def transcribe(audio):
|
13 |
+
waveform, sample_rate = torchaudio.load(audio)
|
14 |
+
if sample_rate != 16000:
|
15 |
+
waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform)
|
16 |
+
if waveform.shape[0] > 1:
|
17 |
+
waveform = waveform.mean(dim=0, keepdim=True)
|
18 |
+
inputs = processor(waveform.squeeze().numpy(), sampling_rate=16000, return_tensors="pt")
|
19 |
+
input_values = inputs.input_values.to(device)
|
20 |
+
with torch.no_grad():
|
21 |
+
logits = model(input_values).logits
|
22 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
23 |
+
transcription = processor.batch_decode(predicted_ids)[0]
|
24 |
+
return transcription.lower()
|
25 |
+
|
26 |
+
gr.Interface(
|
27 |
+
fn=transcribe,
|
28 |
+
inputs=gr.Audio(type="filepath", label="🎙️ Ku hadal Af Soomaali"),
|
29 |
+
outputs=gr.Text(label="📄 Qoraalka la helay"),
|
30 |
+
title="Tacab ASR Somali",
|
31 |
+
description="ASR model for Somali speech-to-text using Wav2Vec2.",
|
32 |
+
).launch()
|