Delete app.py
Browse files
app.py
DELETED
@@ -1,38 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torchaudio
|
3 |
-
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
4 |
-
import gradio as gr
|
5 |
-
|
6 |
-
# Load model and processor
|
7 |
-
model = Wav2Vec2ForCTC.from_pretrained("tacab/tacab_asr_somali")
|
8 |
-
processor = Wav2Vec2Processor.from_pretrained("tacab/tacab_asr_somali")
|
9 |
-
|
10 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
-
model.to(device)
|
12 |
-
|
13 |
-
# Transcription function
|
14 |
-
def transcribe(audio_path):
|
15 |
-
waveform, sample_rate = torchaudio.load(audio_path)
|
16 |
-
if sample_rate != 16000:
|
17 |
-
waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform)
|
18 |
-
if waveform.shape[0] > 1:
|
19 |
-
waveform = waveform.mean(dim=0, keepdim=True)
|
20 |
-
inputs = processor(waveform.squeeze().numpy(), sampling_rate=16000, return_tensors="pt")
|
21 |
-
input_values = inputs.input_values.to(device)
|
22 |
-
with torch.no_grad():
|
23 |
-
logits = model(input_values).logits
|
24 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
25 |
-
transcription = processor.batch_decode(predicted_ids)[0]
|
26 |
-
return transcription.lower()
|
27 |
-
|
28 |
-
# Setup Gradio Interface
|
29 |
-
iface = gr.Interface(
|
30 |
-
fn=transcribe,
|
31 |
-
inputs=gr.Audio(type="filepath", label="ποΈ Somali Audio"),
|
32 |
-
outputs=gr.Text(label="π Transcription"),
|
33 |
-
title="Tacab Somali ASR",
|
34 |
-
description="Speak Somali and get transcription back!",
|
35 |
-
)
|
36 |
-
|
37 |
-
# β
Critical: This exposes /api/predict
|
38 |
-
iface.launch(server_name="0.0.0.0")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|