nurfarah57 commited on
Commit
9d94606
Β·
verified Β·
1 Parent(s): 12f9c3c

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -38
app.py DELETED
@@ -1,38 +0,0 @@
1
- import torch
2
- import torchaudio
3
- from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
4
- import gradio as gr
5
-
6
- # Load model and processor
7
- model = Wav2Vec2ForCTC.from_pretrained("tacab/tacab_asr_somali")
8
- processor = Wav2Vec2Processor.from_pretrained("tacab/tacab_asr_somali")
9
-
10
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
11
- model.to(device)
12
-
13
- # Transcription function
14
- def transcribe(audio_path):
15
- waveform, sample_rate = torchaudio.load(audio_path)
16
- if sample_rate != 16000:
17
- waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform)
18
- if waveform.shape[0] > 1:
19
- waveform = waveform.mean(dim=0, keepdim=True)
20
- inputs = processor(waveform.squeeze().numpy(), sampling_rate=16000, return_tensors="pt")
21
- input_values = inputs.input_values.to(device)
22
- with torch.no_grad():
23
- logits = model(input_values).logits
24
- predicted_ids = torch.argmax(logits, dim=-1)
25
- transcription = processor.batch_decode(predicted_ids)[0]
26
- return transcription.lower()
27
-
28
- # Setup Gradio Interface
29
- iface = gr.Interface(
30
- fn=transcribe,
31
- inputs=gr.Audio(type="filepath", label="πŸŽ™οΈ Somali Audio"),
32
- outputs=gr.Text(label="πŸ“„ Transcription"),
33
- title="Tacab Somali ASR",
34
- description="Speak Somali and get transcription back!",
35
- )
36
-
37
- # βœ… Critical: This exposes /api/predict
38
- iface.launch(server_name="0.0.0.0")