zakihassan04 commited on
Commit
9a3ce46
·
verified ·
1 Parent(s): 072c374

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -19
app.py CHANGED
@@ -1,24 +1,14 @@
1
- import streamlit as st
2
  import torchaudio
3
  import torch
4
- from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
5
 
6
  # Load model and processor
7
- @st.cache_resource
8
- def load_model():
9
- processor = Wav2Vec2Processor.from_pretrained("Mustafaa4a/ASR-Somali")
10
- model = Wav2Vec2ForCTC.from_pretrained("Mustafaa4a/ASR-Somali")
11
- return processor, model
12
 
13
- processor, model = load_model()
14
-
15
- st.title("Somali Speech-to-Text App")
16
- st.write("Upload a Somali audio file (WAV, mono, 16kHz) and get the transcription.")
17
-
18
- uploaded_file = st.file_uploader("Choose a .wav audio file", type="wav")
19
-
20
- if uploaded_file is not None:
21
- waveform, sample_rate = torchaudio.load(uploaded_file)
22
 
23
  if sample_rate != 16000:
24
  resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
@@ -30,6 +20,15 @@ if uploaded_file is not None:
30
 
31
  predicted_ids = torch.argmax(logits, dim=-1)
32
  transcription = processor.decode(predicted_ids[0])
33
-
34
- st.subheader("Qoraalka laga helay codka:")
35
- st.success(transcription)
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
  import torchaudio
3
  import torch
4
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
5
 
6
  # Load model and processor
7
+ processor = Wav2Vec2Processor.from_pretrained("Mustafaa4a/ASR-Somali")
8
+ model = Wav2Vec2ForCTC.from_pretrained("Mustafaa4a/ASR-Somali")
 
 
 
9
 
10
+ def transcribe(audio):
11
+ waveform, sample_rate = torchaudio.load(audio)
 
 
 
 
 
 
 
12
 
13
  if sample_rate != 16000:
14
  resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
 
20
 
21
  predicted_ids = torch.argmax(logits, dim=-1)
22
  transcription = processor.decode(predicted_ids[0])
23
+ return transcription
24
+
25
+ # Gradio Interface
26
+ interface = gr.Interface(
27
+ fn=transcribe,
28
+ inputs=gr.Audio(source="upload", type="filepath", label="Upload Somali Audio (.wav)"),
29
+ outputs=gr.Textbox(label="Transcription"),
30
+ title="Somali ASR using Mustafaa4a/ASR-Somali",
31
+ description="Upload a Somali speech audio file (mono WAV, 16kHz) and get the text transcription."
32
+ )
33
+
34
+ interface.launch()