File size: 17,170 Bytes
3e23f63 8702db7 69c9fd9 644f8c6 f9b53d5 3e23f63 34f268d 644f8c6 3e23f63 644f8c6 3e23f63 f9b53d5 3e23f63 f9b53d5 3ed4400 3e23f63 635d31b 3e23f63 635d31b 3e23f63 635d31b 3e23f63 635d31b 3e23f63 635d31b 3e23f63 644f8c6 3e23f63 69c9fd9 3e23f63 635d31b 3e23f63 3ed4400 3e23f63 ed66c76 3e23f63 ed66c76 3e23f63 445a45a 3e23f63 3ed4400 3e23f63 3ed4400 3e23f63 3ed4400 635d31b 3ed4400 635d31b 3ed4400 3e23f63 3ed4400 3e23f63 445a45a 3e23f63 635d31b 445a45a 3ed4400 635d31b 3e23f63 3ed4400 3e23f63 445a45a 3ed4400 445a45a 3e23f63 445a45a 3e23f63 445a45a 3ed4400 445a45a 3ed4400 3e23f63 3ed4400 445a45a 3e23f63 635d31b 3e23f63 644f8c6 b89eed5 644f8c6 f9b53d5 644f8c6 3e23f63 f9b53d5 3e23f63 644f8c6 3e23f63 f9b53d5 644f8c6 635d31b 644f8c6 f9b53d5 644f8c6 f9b53d5 644f8c6 3e23f63 644f8c6 3e23f63 644f8c6 f9b53d5 644f8c6 3e23f63 635d31b 3e23f63 7b912e5 3e23f63 3ed4400 da9351a 3e23f63 da9351a 3e23f63 da9351a 7b912e5 3e23f63 7b912e5 da9351a 3e23f63 da9351a 7b912e5 da9351a 69c9fd9 da9351a 69c9fd9 da9351a 3e23f63 7b912e5 3e23f63 7b912e5 3e23f63 7b912e5 3e23f63 3ed4400 ed66c76 3ed4400 69c9fd9 b89eed5 69c9fd9 3e23f63 69c9fd9 3ed4400 3e23f63 3ed4400 3e23f63 3ed4400 3e23f63 b89eed5 3e23f63 d850478 7b912e5 3e23f63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
import gradio as gr
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image, ImageFont, ImageDraw
import numpy as np
import os
import string
import cv2
from torchvision.transforms.functional import to_pil_image
import matplotlib.pyplot as plt
import math
from datetime import datetime
import re
from termcolor import colored
from pyctcdecode import BeamSearchDecoderCTC, Alphabet
from difflib import SequenceMatcher
# --------- Globals --------- #
CHARS = string.ascii_letters + string.digits + string.punctuation
CHAR2IDX = {c: i + 1 for i, c in enumerate(CHARS)} # Start from 1
CHAR2IDX["<BLANK>"] = 0 # CTC blank
IDX2CHAR = {v: k for k, v in CHAR2IDX.items()}
BLANK_IDX = 0
IMAGE_HEIGHT = 32
IMAGE_WIDTH = 128
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
font_path = None
ocr_model = None
# Create vocabulary list (ensure order matches your model’s output indices!)
labels = [IDX2CHAR.get(i, "") for i in range(len(IDX2CHAR))]
# Wrap in Alphabet
alphabet = Alphabet.build_alphabet(labels)
# Now initialize decoder correctly
decoder = BeamSearchDecoderCTC(alphabet)
# Ensure required directories exist at startup
os.makedirs("./fonts", exist_ok=True)
os.makedirs("./models", exist_ok=True)
os.makedirs("./labels", exist_ok=True)
# --------- Dataset --------- #
class OCRDataset(Dataset):
def __init__(self, font_path, size=1000, label_length_range=(4, 7)):
self.font = ImageFont.truetype(font_path, 32)
self.label_length_range = label_length_range
self.samples = [
"".join(np.random.choice(list(CHARS), np.random.randint(*self.label_length_range)))
for _ in range(size)
]
self.transform = transforms.Compose([
transforms.ToTensor(), # must be first
transforms.Normalize((0.5,), (0.5,)),
transforms.Resize((IMAGE_HEIGHT, IMAGE_WIDTH)),
transforms.RandomApply([transforms.GaussianBlur(kernel_size=3)], p=0.3),
transforms.RandomApply([transforms.RandomAffine(degrees=10, translate=(0.1, 0.1))], p=0.3),
])
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
label = self.samples[idx]
# Create an image with padding
pad = 8
w = self.font.getlength(label)
h = self.font.size
img_w, img_h = int(w + 2 * pad), int(h + 2 * pad)
img = Image.new("L", (img_w, img_h), 255)
draw = ImageDraw.Draw(img)
draw.text((pad, pad), label, font=self.font, fill=0)
img = self.transform(img)
label_encoded = torch.tensor([CHAR2IDX[c] for c in label], dtype=torch.long)
label_length = torch.tensor(len(label_encoded), dtype=torch.long)
return img, label_encoded, label_length
def render_text(self, text):
img = Image.new("L", (IMAGE_WIDTH, IMAGE_HEIGHT), color=255)
draw = ImageDraw.Draw(img)
bbox = self.font.getbbox(text)
w, h = bbox[2] - bbox[0], bbox[3] - bbox[1]
draw.text(((IMAGE_WIDTH - w) // 2, (IMAGE_HEIGHT - h) // 2), text, font=self.font, fill=0)
return img
# --------- Model --------- #
class OCRModel(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(1, 32, 3, padding=1), nn.ReLU(), nn.MaxPool2d((2, 2), (2, 1)), # height↓2, width↓1
nn.Conv2d(32, 64, 3, padding=1), nn.ReLU(), nn.MaxPool2d((2, 2), (2, 1)) # height↓2 again, width↓1
)
self.rnn = nn.LSTM(64 * 8, 128, bidirectional=True, num_layers=2, batch_first=True)
self.fc = nn.Linear(256, num_classes)
with torch.no_grad():
self.fc.bias[0] = -5.0 # discourage blank early on
def forward(self, x):
b, c, h, w = x.size()
x = self.conv(x)
x = x.permute(0, 3, 1, 2)
x = x.reshape(b, x.size(1), -1)
x, _ = self.rnn(x)
x = self.fc(x)
return x
def color_char(c, conf):
color_levels = ['\033[31m', '\033[33m', '\033[32m', '\033[36m', '\033[34m', '\033[35m', '\033[0m']
idx = min(int(conf * (len(color_levels) - 1)), len(color_levels) - 1)
return f"{color_levels[idx]}{c}\033[0m"
def sanitize_filename(name):
return re.sub(r'[^a-zA-Z0-9_-]', '_', name)
def greedy_decode(log_probs):
# log_probs shape: (T, B, C)
# Usually, B=1 during inference
pred = log_probs.argmax(2).squeeze(1).tolist() # this should give a list of ints
print(f"Decoded indices: {pred}") # debug print
decoded = []
prev = BLANK_IDX
for p in pred:
if p != prev and p != BLANK_IDX:
decoded.append(IDX2CHAR.get(p, ""))
prev = p
return ''.join(decoded)
# --------- Custom Collate --------- #
def custom_collate_fn(batch):
images, labels, _ = zip(*batch)
images = torch.stack(images, 0)
flat_labels = []
label_lengths = []
for label in labels:
flat_labels.append(label)
label_lengths.append(len(label))
targets = torch.cat(flat_labels)
return images, targets, torch.tensor(label_lengths, dtype=torch.long)
# --------- Model Save/Load --------- #
def list_saved_models():
model_dir = "./models"
if not os.path.exists(model_dir):
return []
return [f for f in os.listdir(model_dir) if f.endswith(".pth")]
def save_model(model, path):
torch.save(model.state_dict(), path)
def load_model(filename):
global ocr_model
model_dir = "./models"
path = os.path.join(model_dir, filename)
if not os.path.exists(path):
return f"Model file '{path}' does not exist."
model = OCRModel(num_classes=len(CHAR2IDX))
model.load_state_dict(torch.load(path, map_location=device))
model.to(device)
model.eval()
ocr_model = model
return f"Model '{path}' loaded."
# --------- Gradio Functions --------- #
def train_model(font_file, epochs=100, learning_rate=0.001):
import time
global font_path, ocr_model
# Ensure directories exist
os.makedirs("./fonts", exist_ok=True)
os.makedirs("./models", exist_ok=True)
# Save uploaded font to ./fonts
font_name = os.path.splitext(os.path.basename(font_file.name))[0]
font_path = f"./fonts/{font_name}.ttf"
with open(font_file.name, "rb") as uploaded:
with open(font_path, "wb") as f:
f.write(uploaded.read())
# Curriculum learning: label length grows over time
def get_dataset_for_epoch(epoch):
if epoch < epochs // 3:
label_len = (3, 4)
elif epoch < 2 * epochs // 3:
label_len = (4, 6)
else:
label_len = (5, 7)
return OCRDataset(font_path, label_length_range=label_len)
# Visualize one sample
dataset = get_dataset_for_epoch(0)
img, label, _ = dataset[0]
print("Label:", ''.join([IDX2CHAR[i.item()] for i in label]))
plt.imshow(img.permute(1, 2, 0).squeeze(), cmap='gray')
plt.show()
# Model setup
model = OCRModel(num_classes=len(CHAR2IDX)).to(device)
criterion = nn.CTCLoss(blank=BLANK_IDX)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=5)
for epoch in range(epochs):
dataset = get_dataset_for_epoch(epoch)
dataloader = DataLoader(dataset, batch_size=16, shuffle=True, collate_fn=custom_collate_fn)
model.train()
running_loss = 0.0
# Warmup learning rate
if epoch < 5:
warmup_lr = learning_rate * 0.2
for param_group in optimizer.param_groups:
param_group['lr'] = warmup_lr
else:
for param_group in optimizer.param_groups:
param_group['lr'] = learning_rate
for img, targets, target_lengths in dataloader:
img = img.to(device)
targets = targets.to(device)
target_lengths = target_lengths.to(device)
output = model(img)
seq_len = output.size(1)
batch_size = img.size(0)
input_lengths = torch.full((batch_size,), seq_len, dtype=torch.long).to(device)
log_probs = output.log_softmax(2).transpose(0, 1)
loss = criterion(log_probs, targets, input_lengths, target_lengths)
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
avg_loss = running_loss / len(dataloader)
scheduler.step(avg_loss)
print(f"[{epoch + 1}/{epochs}] Loss: {avg_loss:.4f}")
# Save the model to ./models
timestamp = time.strftime("%Y%m%d%H%M%S")
model_name = f"{font_name}_{epochs}ep_lr{learning_rate:.0e}_{timestamp}.pth"
model_path = os.path.join("./models", model_name)
save_model(model, model_path)
ocr_model = model
return f"✅ Training complete! Model saved as '{model_path}'"
def preprocess_image(image: Image.Image):
img_cv = np.array(image.convert("L"))
img_bin = cv2.adaptiveThreshold(img_cv, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, 25, 15)
# Invert if background is dark
white_px = (img_bin == 255).sum()
black_px = (img_bin == 0).sum()
if black_px > white_px:
img_bin = 255 - img_bin
# Resize and pad/crop to (IMAGE_HEIGHT, IMAGE_WIDTH)
h, w = img_bin.shape
scale = IMAGE_HEIGHT / h
new_w = int(w * scale)
resized = cv2.resize(img_bin, (new_w, IMAGE_HEIGHT), interpolation=cv2.INTER_AREA)
if new_w < IMAGE_WIDTH:
pad_width = IMAGE_WIDTH - new_w
padded = np.pad(resized, ((0, 0), (0, pad_width)), constant_values=255)
else:
padded = resized[:, :IMAGE_WIDTH]
return to_pil_image(padded)
# ROYGBIV color ramp (low → high confidence)
CONFIDENCE_COLORS = [
"#FF0000", # Red
"#FF7F00", # Orange
"#FFFF00", # Yellow
"#00FF00", # Green
"#00BFFF", # Sky Blue
"#0000FF", # Blue
"#8B00FF", # Violet
]
def confidence_to_color(conf):
"""
Map confidence (0.0–1.0) to a ROYGBIV-style hex color.
"""
index = min(int(conf * (len(CONFIDENCE_COLORS) - 1)), len(CONFIDENCE_COLORS) - 1)
return CONFIDENCE_COLORS[index]
def color_char(c, conf):
"""
Wrap character `c` in a span tag with color mapped from `conf`.
"""
color = confidence_to_color(conf)
return f'<span style="color:{color}; font-size:12pt; font-weight:bold;">{c}</span>'
def predict_text(image: Image.Image, ground_truth: str = None, debug: bool = False):
if ocr_model is None:
return "Please load or train a model first."
processed = preprocess_image(image)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
img_tensor = transform(processed).unsqueeze(0).to(device) # (1, C, H, W)
ocr_model.eval()
with torch.no_grad():
output = ocr_model(img_tensor) # (1, T, C)
log_probs = output.log_softmax(2)[0] # (T, C)
# Decode best beam path (string)
pred_text_raw = decoder.decode(log_probs.cpu().numpy())
pred_chars = pred_text_raw.replace("<BLANK>", "")
# Remove <BLANK> tokens if present (assuming <BLANK> is in vocab)
pred_text = ''.join([c for c in pred_chars if c != "<BLANK>"])
# Confidence: mean max prob per timestep
probs = log_probs.exp()
max_probs = probs.max(dim=1)[0]
avg_conf = max_probs.mean().item()
# Color each character (uniform confidence for now)
colorized_chars = [color_char(c, avg_conf) for c in pred_text]
pretty_output = ''.join(colorized_chars)
sim_score = ""
if ground_truth:
similarity = SequenceMatcher(None, ground_truth, pred_text).ratio()
sim_score = f"<br><strong>Levenshtein Similarity:</strong> {similarity:.2%}"
if debug:
print("Decoded Text:", pred_text)
print("Average Confidence:", avg_conf)
if ground_truth:
print("Ground Truth:", ground_truth)
return f"<strong>Prediction:</strong> <strong>{pretty_output}</strong><br><strong>Confidence:</strong> {avg_conf:.2%}{sim_score}"
# New helper function: generate label images grid
CHARS = string.ascii_letters + string.digits + string.punctuation
FONT_SIZE = 32
PADDING = 8
LABEL_DIR = "./labels"
def generate_labels(font_file=None, num_labels: int = 25):
global font_path
try:
if font_file and font_file != "None":
font_path = os.path.abspath(font_file)
else:
font_path = None
if font_path is None or not os.path.exists(font_path):
font = ImageFont.load_default()
else:
font = ImageFont.truetype(font_path, 32)
os.makedirs("./labels", exist_ok=True)
labels = ["".join(np.random.choice(list(CHARS), np.random.randint(4, 7))) for _ in range(num_labels)]
images = []
for label in labels:
bbox = font.getbbox(label)
text_w = bbox[2] - bbox[0]
text_h = bbox[3] - bbox[1]
pad = 8
img_w = text_w + pad * 2
img_h = text_h + pad * 2
img = Image.new("L", (img_w, img_h), color=255)
draw = ImageDraw.Draw(img)
draw.text((pad, pad), label, font=font, fill=0)
safe_label = sanitize_filename(label)
timestamp = datetime.now().strftime("%Y%m%d%H%M%S%f")
label_dir = os.path.join("./labels", safe_label)
os.makedirs(label_dir, exist_ok=True)
filepath = os.path.join(label_dir, f"{timestamp}.png")
img.save(filepath)
images.append(img)
return images
except Exception as e:
print("Error in generate_labels:", e)
error_img = Image.new("RGB", (512, 128), color=(255, 255, 255))
draw = ImageDraw.Draw(error_img)
draw.text((10, 50), f"Error: {str(e)}", fill=(255, 0, 0))
return [error_img]
def list_fonts():
font_dir = "./fonts"
if not os.path.exists(font_dir):
return ["None"]
fonts = [
(f, os.path.join(font_dir, f)) for f in os.listdir(font_dir)
if f.lower().endswith((".ttf", ".otf"))
]
return [("None", "None")] + fonts
custom_css = """
#label-gallery .gallery-item img {
height: 43px; /* 32pt ≈ 43px */
width: auto;
object-fit: contain;
padding: 4px;
}
#label-gallery {
flex-grow: 1;
overflow-y: auto;
height: 100%;
}
#output-text {
font-size: 12pt;
}
"""
# --------- Updated Gradio UI with new tab --------- #
with gr.Blocks(css=custom_css) as demo:
with gr.Tab("【Train OCR Model】"):
font_file = gr.File(label="Upload .ttf or .otf font", file_types=[".ttf", ".otf"])
epochs_input = gr.Slider(minimum=1, maximum=4096, value=256, step=1, label="Epochs")
lr_input = gr.Slider(minimum=0.001, maximum=0.1, value=0.05, step=0.001, label="Learning Rate")
train_button = gr.Button("Train OCR Model")
train_status = gr.Textbox(label="Status")
train_button.click(fn=train_model, inputs=[font_file, epochs_input, lr_input], outputs=train_status)
with gr.Tab("【Generate Labels】"):
font_file_labels = gr.Dropdown(
choices=list_fonts(),
label="Optional font for label image",
interactive=True,
)
num_labels = gr.Number(value=20, label="Number of labels to generate", precision=0, interactive=True)
gen_button = gr.Button("Generate Label Grid")
gen_button.click(
fn=generate_labels,
inputs=[font_file_labels, num_labels],
outputs=gr.Gallery(
label="Generated Labels",
columns=16, # 16 tiles per row
object_fit="contain", # Maintain aspect ratio
height="100%", # Allow full app height
elem_id="label-gallery" # For CSS targeting
)
)
with gr.Tab("【Recognize Text】"):
model_list = gr.Dropdown(choices=list_saved_models(), label="Select OCR Model")
refresh_btn = gr.Button("🔄 Refresh Models")
load_model_btn = gr.Button("Load Model") # <-- new button
image_input = gr.Image(type="pil", label="Upload word strip")
predict_btn = gr.Button("Predict")
output_text = gr.HTML(label="Recognized Text", elem_id="output-text")
model_status = gr.Textbox(label="Model Load Status")
# Refresh dropdown choices
refresh_btn.click(fn=lambda: gr.update(choices=list_saved_models()), outputs=model_list)
# Load model on button click, NOT dropdown change
load_model_btn.click(fn=load_model, inputs=model_list, outputs=model_status)
predict_btn.click(fn=predict_text, inputs=image_input, outputs=output_text)
if __name__ == "__main__":
demo.launch()
|