|
|
|
|
|
import copy |
|
import logging |
|
import numpy as np |
|
import operator |
|
import torch |
|
import torch.utils.data |
|
import json |
|
from detectron2.utils.comm import get_world_size |
|
from detectron2.utils.logger import _log_api_usage, log_first_n |
|
|
|
from detectron2.config import configurable |
|
from detectron2.data import samplers |
|
from torch.utils.data.sampler import BatchSampler, Sampler |
|
from detectron2.data.common import DatasetFromList, MapDataset |
|
from detectron2.data.dataset_mapper import DatasetMapper |
|
from detectron2.data.build import get_detection_dataset_dicts, build_batch_data_loader |
|
from detectron2.data.samplers import TrainingSampler, RepeatFactorTrainingSampler |
|
from detectron2.data.build import worker_init_reset_seed, print_instances_class_histogram |
|
from detectron2.data.build import filter_images_with_only_crowd_annotations |
|
from detectron2.data.build import filter_images_with_few_keypoints |
|
from detectron2.data.build import check_metadata_consistency |
|
from detectron2.data.catalog import MetadataCatalog, DatasetCatalog |
|
from detectron2.utils import comm |
|
import itertools |
|
import math |
|
from collections import defaultdict |
|
from typing import Optional |
|
|
|
|
|
def _custom_train_loader_from_config(cfg, mapper=None, *, dataset=None, sampler=None): |
|
sampler_name = cfg.DATALOADER.SAMPLER_TRAIN |
|
if 'MultiDataset' in sampler_name: |
|
dataset_dicts = get_detection_dataset_dicts_with_source( |
|
cfg.DATASETS.TRAIN, |
|
filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS, |
|
min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE |
|
if cfg.MODEL.KEYPOINT_ON else 0, |
|
proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None, |
|
) |
|
else: |
|
dataset_dicts = get_detection_dataset_dicts( |
|
cfg.DATASETS.TRAIN, |
|
filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS, |
|
min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE |
|
if cfg.MODEL.KEYPOINT_ON else 0, |
|
proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None, |
|
) |
|
|
|
if mapper is None: |
|
mapper = DatasetMapper(cfg, True) |
|
|
|
if sampler is not None: |
|
pass |
|
elif sampler_name == "TrainingSampler": |
|
sampler = TrainingSampler(len(dataset)) |
|
elif sampler_name == "MultiDatasetSampler": |
|
sampler = MultiDatasetSampler( |
|
dataset_dicts, |
|
dataset_ratio = cfg.DATALOADER.DATASET_RATIO, |
|
use_rfs = cfg.DATALOADER.USE_RFS, |
|
dataset_ann = cfg.DATALOADER.DATASET_ANN, |
|
repeat_threshold = cfg.DATALOADER.REPEAT_THRESHOLD, |
|
) |
|
elif sampler_name == "RepeatFactorTrainingSampler": |
|
repeat_factors = RepeatFactorTrainingSampler.repeat_factors_from_category_frequency( |
|
dataset_dicts, cfg.DATALOADER.REPEAT_THRESHOLD |
|
) |
|
sampler = RepeatFactorTrainingSampler(repeat_factors) |
|
else: |
|
raise ValueError("Unknown training sampler: {}".format(sampler_name)) |
|
|
|
return { |
|
"dataset": dataset_dicts, |
|
"sampler": sampler, |
|
"mapper": mapper, |
|
"total_batch_size": cfg.SOLVER.IMS_PER_BATCH, |
|
"aspect_ratio_grouping": cfg.DATALOADER.ASPECT_RATIO_GROUPING, |
|
"num_workers": cfg.DATALOADER.NUM_WORKERS, |
|
'multi_dataset_grouping': cfg.DATALOADER.MULTI_DATASET_GROUPING, |
|
'use_diff_bs_size': cfg.DATALOADER.USE_DIFF_BS_SIZE, |
|
'dataset_bs': cfg.DATALOADER.DATASET_BS, |
|
'num_datasets': len(cfg.DATASETS.TRAIN) |
|
} |
|
|
|
|
|
@configurable(from_config=_custom_train_loader_from_config) |
|
def build_custom_train_loader( |
|
dataset, *, mapper, sampler, |
|
total_batch_size=16, |
|
aspect_ratio_grouping=True, |
|
num_workers=0, |
|
num_datasets=1, |
|
multi_dataset_grouping=False, |
|
use_diff_bs_size=False, |
|
dataset_bs=[] |
|
): |
|
""" |
|
Modified from detectron2.data.build.build_custom_train_loader, but supports |
|
different samplers |
|
""" |
|
if isinstance(dataset, list): |
|
dataset = DatasetFromList(dataset, copy=False) |
|
if mapper is not None: |
|
dataset = MapDataset(dataset, mapper) |
|
if sampler is None: |
|
sampler = TrainingSampler(len(dataset)) |
|
assert isinstance(sampler, torch.utils.data.sampler.Sampler) |
|
if multi_dataset_grouping: |
|
return build_multi_dataset_batch_data_loader( |
|
use_diff_bs_size, |
|
dataset_bs, |
|
dataset, |
|
sampler, |
|
total_batch_size, |
|
num_datasets=num_datasets, |
|
num_workers=num_workers, |
|
) |
|
else: |
|
return build_batch_data_loader( |
|
dataset, |
|
sampler, |
|
total_batch_size, |
|
aspect_ratio_grouping=aspect_ratio_grouping, |
|
num_workers=num_workers, |
|
) |
|
|
|
|
|
def build_multi_dataset_batch_data_loader( |
|
use_diff_bs_size, dataset_bs, |
|
dataset, sampler, total_batch_size, num_datasets, num_workers=0 |
|
): |
|
""" |
|
""" |
|
world_size = get_world_size() |
|
assert ( |
|
total_batch_size > 0 and total_batch_size % world_size == 0 |
|
), "Total batch size ({}) must be divisible by the number of gpus ({}).".format( |
|
total_batch_size, world_size |
|
) |
|
|
|
batch_size = total_batch_size // world_size |
|
data_loader = torch.utils.data.DataLoader( |
|
dataset, |
|
sampler=sampler, |
|
num_workers=num_workers, |
|
batch_sampler=None, |
|
collate_fn=operator.itemgetter(0), |
|
worker_init_fn=worker_init_reset_seed, |
|
) |
|
if use_diff_bs_size: |
|
return DIFFMDAspectRatioGroupedDataset( |
|
data_loader, dataset_bs, num_datasets) |
|
else: |
|
return MDAspectRatioGroupedDataset( |
|
data_loader, batch_size, num_datasets) |
|
|
|
|
|
def get_detection_dataset_dicts_with_source( |
|
dataset_names, filter_empty=True, min_keypoints=0, proposal_files=None |
|
): |
|
assert len(dataset_names) |
|
dataset_dicts = [DatasetCatalog.get(dataset_name) for dataset_name in dataset_names] |
|
for dataset_name, dicts in zip(dataset_names, dataset_dicts): |
|
assert len(dicts), "Dataset '{}' is empty!".format(dataset_name) |
|
|
|
for source_id, (dataset_name, dicts) in \ |
|
enumerate(zip(dataset_names, dataset_dicts)): |
|
assert len(dicts), "Dataset '{}' is empty!".format(dataset_name) |
|
for d in dicts: |
|
d['dataset_source'] = source_id |
|
|
|
if "annotations" in dicts[0]: |
|
try: |
|
class_names = MetadataCatalog.get(dataset_name).thing_classes |
|
check_metadata_consistency("thing_classes", dataset_name) |
|
print_instances_class_histogram(dicts, class_names) |
|
except AttributeError: |
|
pass |
|
|
|
assert proposal_files is None |
|
|
|
dataset_dicts = list(itertools.chain.from_iterable(dataset_dicts)) |
|
|
|
has_instances = "annotations" in dataset_dicts[0] |
|
if filter_empty and has_instances: |
|
dataset_dicts = filter_images_with_only_crowd_annotations(dataset_dicts) |
|
if min_keypoints > 0 and has_instances: |
|
dataset_dicts = filter_images_with_few_keypoints(dataset_dicts, min_keypoints) |
|
|
|
return dataset_dicts |
|
|
|
|
|
class MultiDatasetSampler(Sampler): |
|
def __init__( |
|
self, |
|
dataset_dicts, |
|
dataset_ratio, |
|
use_rfs, |
|
dataset_ann, |
|
repeat_threshold=0.001, |
|
seed: Optional[int] = None, |
|
): |
|
""" |
|
""" |
|
sizes = [0 for _ in range(len(dataset_ratio))] |
|
for d in dataset_dicts: |
|
sizes[d['dataset_source']] += 1 |
|
print('dataset sizes', sizes) |
|
self.sizes = sizes |
|
assert len(dataset_ratio) == len(sizes), \ |
|
'length of dataset ratio {} should be equal to number if dataset {}'.format( |
|
len(dataset_ratio), len(sizes) |
|
) |
|
if seed is None: |
|
seed = comm.shared_random_seed() |
|
self._seed = int(seed) |
|
self._rank = comm.get_rank() |
|
self._world_size = comm.get_world_size() |
|
|
|
self.dataset_ids = torch.tensor( |
|
[d['dataset_source'] for d in dataset_dicts], dtype=torch.long) |
|
|
|
dataset_weight = [torch.ones(s) * max(sizes) / s * r / sum(dataset_ratio) \ |
|
for i, (r, s) in enumerate(zip(dataset_ratio, sizes))] |
|
dataset_weight = torch.cat(dataset_weight) |
|
|
|
rfs_factors = [] |
|
st = 0 |
|
for i, s in enumerate(sizes): |
|
if use_rfs[i]: |
|
if dataset_ann[i] == 'box': |
|
rfs_func = RepeatFactorTrainingSampler.repeat_factors_from_category_frequency |
|
else: |
|
rfs_func = repeat_factors_from_tag_frequency |
|
rfs_factor = rfs_func( |
|
dataset_dicts[st: st + s], |
|
repeat_thresh=repeat_threshold) |
|
rfs_factor = rfs_factor * (s / rfs_factor.sum()) |
|
else: |
|
rfs_factor = torch.ones(s) |
|
rfs_factors.append(rfs_factor) |
|
st = st + s |
|
rfs_factors = torch.cat(rfs_factors) |
|
|
|
self.weights = dataset_weight * rfs_factors |
|
self.sample_epoch_size = len(self.weights) |
|
|
|
def __iter__(self): |
|
start = self._rank |
|
yield from itertools.islice( |
|
self._infinite_indices(), start, None, self._world_size) |
|
|
|
|
|
def _infinite_indices(self): |
|
g = torch.Generator() |
|
g.manual_seed(self._seed) |
|
while True: |
|
ids = torch.multinomial( |
|
self.weights, self.sample_epoch_size, generator=g, |
|
replacement=True) |
|
nums = [(self.dataset_ids[ids] == i).sum().int().item() \ |
|
for i in range(len(self.sizes))] |
|
yield from ids |
|
|
|
|
|
class MDAspectRatioGroupedDataset(torch.utils.data.IterableDataset): |
|
def __init__(self, dataset, batch_size, num_datasets): |
|
""" |
|
""" |
|
self.dataset = dataset |
|
self.batch_size = batch_size |
|
self._buckets = [[] for _ in range(2 * num_datasets)] |
|
|
|
def __iter__(self): |
|
for d in self.dataset: |
|
w, h = d["width"], d["height"] |
|
aspect_ratio_bucket_id = 0 if w > h else 1 |
|
bucket_id = d['dataset_source'] * 2 + aspect_ratio_bucket_id |
|
bucket = self._buckets[bucket_id] |
|
bucket.append(d) |
|
if len(bucket) == self.batch_size: |
|
yield bucket[:] |
|
del bucket[:] |
|
|
|
|
|
class DIFFMDAspectRatioGroupedDataset(torch.utils.data.IterableDataset): |
|
def __init__(self, dataset, batch_sizes, num_datasets): |
|
""" |
|
""" |
|
self.dataset = dataset |
|
self.batch_sizes = batch_sizes |
|
self._buckets = [[] for _ in range(2 * num_datasets)] |
|
|
|
def __iter__(self): |
|
for d in self.dataset: |
|
w, h = d["width"], d["height"] |
|
aspect_ratio_bucket_id = 0 if w > h else 1 |
|
bucket_id = d['dataset_source'] * 2 + aspect_ratio_bucket_id |
|
bucket = self._buckets[bucket_id] |
|
bucket.append(d) |
|
if len(bucket) == self.batch_sizes[d['dataset_source']]: |
|
yield bucket[:] |
|
del bucket[:] |
|
|
|
|
|
def repeat_factors_from_tag_frequency(dataset_dicts, repeat_thresh): |
|
""" |
|
""" |
|
category_freq = defaultdict(int) |
|
for dataset_dict in dataset_dicts: |
|
cat_ids = dataset_dict['pos_category_ids'] |
|
for cat_id in cat_ids: |
|
category_freq[cat_id] += 1 |
|
num_images = len(dataset_dicts) |
|
for k, v in category_freq.items(): |
|
category_freq[k] = v / num_images |
|
|
|
category_rep = { |
|
cat_id: max(1.0, math.sqrt(repeat_thresh / cat_freq)) |
|
for cat_id, cat_freq in category_freq.items() |
|
} |
|
|
|
rep_factors = [] |
|
for dataset_dict in dataset_dicts: |
|
cat_ids = dataset_dict['pos_category_ids'] |
|
rep_factor = max({category_rep[cat_id] for cat_id in cat_ids}, default=1.0) |
|
rep_factors.append(rep_factor) |
|
|
|
return torch.tensor(rep_factors, dtype=torch.float32) |