taesiri's picture
Duplicate from taesiri/DeticChatGPT
f97cf44
raw
history blame
6.24 kB
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
import math
from os.path import join
import numpy as np
import copy
from functools import partial
import torch
from torch import nn
import torch.utils.model_zoo as model_zoo
import torch.nn.functional as F
import fvcore.nn.weight_init as weight_init
from detectron2.modeling.backbone import FPN
from detectron2.modeling.backbone.build import BACKBONE_REGISTRY
from detectron2.layers.batch_norm import get_norm, FrozenBatchNorm2d
from detectron2.modeling.backbone import Backbone
from timm import create_model
from timm.models.helpers import build_model_with_cfg
from timm.models.registry import register_model
from timm.models.resnet import ResNet, Bottleneck
from timm.models.resnet import default_cfgs as default_cfgs_resnet
class CustomResNet(ResNet):
def __init__(self, **kwargs):
self.out_indices = kwargs.pop('out_indices')
super().__init__(**kwargs)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.act1(x)
x = self.maxpool(x)
ret = [x]
x = self.layer1(x)
ret.append(x)
x = self.layer2(x)
ret.append(x)
x = self.layer3(x)
ret.append(x)
x = self.layer4(x)
ret.append(x)
return [ret[i] for i in self.out_indices]
def load_pretrained(self, cached_file):
data = torch.load(cached_file, map_location='cpu')
if 'state_dict' in data:
self.load_state_dict(data['state_dict'])
else:
self.load_state_dict(data)
model_params = {
'resnet50': dict(block=Bottleneck, layers=[3, 4, 6, 3]),
'resnet50_in21k': dict(block=Bottleneck, layers=[3, 4, 6, 3]),
}
def create_timm_resnet(variant, out_indices, pretrained=False, **kwargs):
params = model_params[variant]
default_cfgs_resnet['resnet50_in21k'] = \
copy.deepcopy(default_cfgs_resnet['resnet50'])
default_cfgs_resnet['resnet50_in21k']['url'] = \
'https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/resnet50_miil_21k.pth'
default_cfgs_resnet['resnet50_in21k']['num_classes'] = 11221
return build_model_with_cfg(
CustomResNet, variant, pretrained,
default_cfg=default_cfgs_resnet[variant],
out_indices=out_indices,
pretrained_custom_load=True,
**params,
**kwargs)
class LastLevelP6P7_P5(nn.Module):
"""
"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.num_levels = 2
self.in_feature = "p5"
self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1)
self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1)
for module in [self.p6, self.p7]:
weight_init.c2_xavier_fill(module)
def forward(self, c5):
p6 = self.p6(c5)
p7 = self.p7(F.relu(p6))
return [p6, p7]
def freeze_module(x):
"""
"""
for p in x.parameters():
p.requires_grad = False
FrozenBatchNorm2d.convert_frozen_batchnorm(x)
return x
class TIMM(Backbone):
def __init__(self, base_name, out_levels, freeze_at=0, norm='FrozenBN'):
super().__init__()
out_indices = [x - 1 for x in out_levels]
if 'resnet' in base_name:
self.base = create_timm_resnet(
base_name, out_indices=out_indices,
pretrained=False)
elif 'eff' in base_name:
self.base = create_model(
base_name, features_only=True,
out_indices=out_indices, pretrained=True)
else:
assert 0, base_name
feature_info = [dict(num_chs=f['num_chs'], reduction=f['reduction']) \
for i, f in enumerate(self.base.feature_info)]
self._out_features = ['layer{}'.format(x) for x in out_levels]
self._out_feature_channels = {
'layer{}'.format(l): feature_info[l - 1]['num_chs'] for l in out_levels}
self._out_feature_strides = {
'layer{}'.format(l): feature_info[l - 1]['reduction'] for l in out_levels}
self._size_divisibility = max(self._out_feature_strides.values())
if 'resnet' in base_name:
self.freeze(freeze_at)
if norm == 'FrozenBN':
self = FrozenBatchNorm2d.convert_frozen_batchnorm(self)
def freeze(self, freeze_at=0):
"""
"""
if freeze_at >= 1:
print('Frezing', self.base.conv1)
self.base.conv1 = freeze_module(self.base.conv1)
if freeze_at >= 2:
print('Frezing', self.base.layer1)
self.base.layer1 = freeze_module(self.base.layer1)
def forward(self, x):
features = self.base(x)
ret = {k: v for k, v in zip(self._out_features, features)}
return ret
@property
def size_divisibility(self):
return self._size_divisibility
@BACKBONE_REGISTRY.register()
def build_timm_backbone(cfg, input_shape):
model = TIMM(
cfg.MODEL.TIMM.BASE_NAME,
cfg.MODEL.TIMM.OUT_LEVELS,
freeze_at=cfg.MODEL.TIMM.FREEZE_AT,
norm=cfg.MODEL.TIMM.NORM,
)
return model
@BACKBONE_REGISTRY.register()
def build_p67_timm_fpn_backbone(cfg, input_shape):
"""
"""
bottom_up = build_timm_backbone(cfg, input_shape)
in_features = cfg.MODEL.FPN.IN_FEATURES
out_channels = cfg.MODEL.FPN.OUT_CHANNELS
backbone = FPN(
bottom_up=bottom_up,
in_features=in_features,
out_channels=out_channels,
norm=cfg.MODEL.FPN.NORM,
top_block=LastLevelP6P7_P5(out_channels, out_channels),
fuse_type=cfg.MODEL.FPN.FUSE_TYPE,
)
return backbone
@BACKBONE_REGISTRY.register()
def build_p35_timm_fpn_backbone(cfg, input_shape):
"""
"""
bottom_up = build_timm_backbone(cfg, input_shape)
in_features = cfg.MODEL.FPN.IN_FEATURES
out_channels = cfg.MODEL.FPN.OUT_CHANNELS
backbone = FPN(
bottom_up=bottom_up,
in_features=in_features,
out_channels=out_channels,
norm=cfg.MODEL.FPN.NORM,
top_block=None,
fuse_type=cfg.MODEL.FPN.FUSE_TYPE,
)
return backbone