ChatGPT-ImageCaptioner / tools /dump_clip_features.py
taesiri's picture
Duplicate from taesiri/DeticChatGPT
f97cf44
raw
history blame
5.24 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import argparse
import json
import torch
import numpy as np
import itertools
from nltk.corpus import wordnet
import sys
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--ann', default='datasets/lvis/lvis_v1_val.json')
parser.add_argument('--out_path', default='')
parser.add_argument('--prompt', default='a')
parser.add_argument('--model', default='clip')
parser.add_argument('--clip_model', default="ViT-B/32")
parser.add_argument('--fix_space', action='store_true')
parser.add_argument('--use_underscore', action='store_true')
parser.add_argument('--avg_synonyms', action='store_true')
parser.add_argument('--use_wn_name', action='store_true')
args = parser.parse_args()
print('Loading', args.ann)
data = json.load(open(args.ann, 'r'))
cat_names = [x['name'] for x in \
sorted(data['categories'], key=lambda x: x['id'])]
if 'synonyms' in data['categories'][0]:
if args.use_wn_name:
synonyms = [
[xx.name() for xx in wordnet.synset(x['synset']).lemmas()] \
if x['synset'] != 'stop_sign.n.01' else ['stop_sign'] \
for x in sorted(data['categories'], key=lambda x: x['id'])]
else:
synonyms = [x['synonyms'] for x in \
sorted(data['categories'], key=lambda x: x['id'])]
else:
synonyms = []
if args.fix_space:
cat_names = [x.replace('_', ' ') for x in cat_names]
if args.use_underscore:
cat_names = [x.strip().replace('/ ', '/').replace(' ', '_') for x in cat_names]
print('cat_names', cat_names)
device = "cuda" if torch.cuda.is_available() else "cpu"
if args.prompt == 'a':
sentences = ['a ' + x for x in cat_names]
sentences_synonyms = [['a ' + xx for xx in x] for x in synonyms]
if args.prompt == 'none':
sentences = [x for x in cat_names]
sentences_synonyms = [[xx for xx in x] for x in synonyms]
elif args.prompt == 'photo':
sentences = ['a photo of a {}'.format(x) for x in cat_names]
sentences_synonyms = [['a photo of a {}'.format(xx) for xx in x] \
for x in synonyms]
elif args.prompt == 'scene':
sentences = ['a photo of a {} in the scene'.format(x) for x in cat_names]
sentences_synonyms = [['a photo of a {} in the scene'.format(xx) for xx in x] \
for x in synonyms]
print('sentences_synonyms', len(sentences_synonyms), \
sum(len(x) for x in sentences_synonyms))
if args.model == 'clip':
import clip
print('Loading CLIP')
model, preprocess = clip.load(args.clip_model, device=device)
if args.avg_synonyms:
sentences = list(itertools.chain.from_iterable(sentences_synonyms))
print('flattened_sentences', len(sentences))
text = clip.tokenize(sentences).to(device)
with torch.no_grad():
if len(text) > 10000:
text_features = torch.cat([
model.encode_text(text[:len(text) // 2]),
model.encode_text(text[len(text) // 2:])],
dim=0)
else:
text_features = model.encode_text(text)
print('text_features.shape', text_features.shape)
if args.avg_synonyms:
synonyms_per_cat = [len(x) for x in sentences_synonyms]
text_features = text_features.split(synonyms_per_cat, dim=0)
text_features = [x.mean(dim=0) for x in text_features]
text_features = torch.stack(text_features, dim=0)
print('after stack', text_features.shape)
text_features = text_features.cpu().numpy()
elif args.model in ['bert', 'roberta']:
from transformers import AutoTokenizer, AutoModel
if args.model == 'bert':
model_name = 'bert-large-uncased'
if args.model == 'roberta':
model_name = 'roberta-large'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
model.eval()
if args.avg_synonyms:
sentences = list(itertools.chain.from_iterable(sentences_synonyms))
print('flattened_sentences', len(sentences))
inputs = tokenizer(sentences, padding=True, return_tensors="pt")
with torch.no_grad():
model_outputs = model(**inputs)
outputs = model_outputs.pooler_output
text_features = outputs.detach().cpu()
if args.avg_synonyms:
synonyms_per_cat = [len(x) for x in sentences_synonyms]
text_features = text_features.split(synonyms_per_cat, dim=0)
text_features = [x.mean(dim=0) for x in text_features]
text_features = torch.stack(text_features, dim=0)
print('after stack', text_features.shape)
text_features = text_features.numpy()
print('text_features.shape', text_features.shape)
else:
assert 0, args.model
if args.out_path != '':
print('saveing to', args.out_path)
np.save(open(args.out_path, 'wb'), text_features)
import pdb; pdb.set_trace()