ChatGPT-ImageCaptioner / tools /merge_lvis_coco.py
taesiri's picture
Duplicate from taesiri/DeticChatGPT
f97cf44
# Copyright (c) Facebook, Inc. and its affiliates.
from collections import defaultdict
import torch
import sys
import json
import numpy as np
from detectron2.structures import Boxes, pairwise_iou
COCO_PATH = 'datasets/coco/annotations/instances_train2017.json'
IMG_PATH = 'datasets/coco/train2017/'
LVIS_PATH = 'datasets/lvis/lvis_v1_train.json'
NO_SEG = False
if NO_SEG:
SAVE_PATH = 'datasets/lvis/lvis_v1_train+coco_box.json'
else:
SAVE_PATH = 'datasets/lvis/lvis_v1_train+coco_mask.json'
THRESH = 0.7
DEBUG = False
# This mapping is extracted from the official LVIS mapping:
# https://github.com/lvis-dataset/lvis-api/blob/master/data/coco_to_synset.json
COCO_SYNSET_CATEGORIES = [
{"synset": "person.n.01", "coco_cat_id": 1},
{"synset": "bicycle.n.01", "coco_cat_id": 2},
{"synset": "car.n.01", "coco_cat_id": 3},
{"synset": "motorcycle.n.01", "coco_cat_id": 4},
{"synset": "airplane.n.01", "coco_cat_id": 5},
{"synset": "bus.n.01", "coco_cat_id": 6},
{"synset": "train.n.01", "coco_cat_id": 7},
{"synset": "truck.n.01", "coco_cat_id": 8},
{"synset": "boat.n.01", "coco_cat_id": 9},
{"synset": "traffic_light.n.01", "coco_cat_id": 10},
{"synset": "fireplug.n.01", "coco_cat_id": 11},
{"synset": "stop_sign.n.01", "coco_cat_id": 13},
{"synset": "parking_meter.n.01", "coco_cat_id": 14},
{"synset": "bench.n.01", "coco_cat_id": 15},
{"synset": "bird.n.01", "coco_cat_id": 16},
{"synset": "cat.n.01", "coco_cat_id": 17},
{"synset": "dog.n.01", "coco_cat_id": 18},
{"synset": "horse.n.01", "coco_cat_id": 19},
{"synset": "sheep.n.01", "coco_cat_id": 20},
{"synset": "beef.n.01", "coco_cat_id": 21},
{"synset": "elephant.n.01", "coco_cat_id": 22},
{"synset": "bear.n.01", "coco_cat_id": 23},
{"synset": "zebra.n.01", "coco_cat_id": 24},
{"synset": "giraffe.n.01", "coco_cat_id": 25},
{"synset": "backpack.n.01", "coco_cat_id": 27},
{"synset": "umbrella.n.01", "coco_cat_id": 28},
{"synset": "bag.n.04", "coco_cat_id": 31},
{"synset": "necktie.n.01", "coco_cat_id": 32},
{"synset": "bag.n.06", "coco_cat_id": 33},
{"synset": "frisbee.n.01", "coco_cat_id": 34},
{"synset": "ski.n.01", "coco_cat_id": 35},
{"synset": "snowboard.n.01", "coco_cat_id": 36},
{"synset": "ball.n.06", "coco_cat_id": 37},
{"synset": "kite.n.03", "coco_cat_id": 38},
{"synset": "baseball_bat.n.01", "coco_cat_id": 39},
{"synset": "baseball_glove.n.01", "coco_cat_id": 40},
{"synset": "skateboard.n.01", "coco_cat_id": 41},
{"synset": "surfboard.n.01", "coco_cat_id": 42},
{"synset": "tennis_racket.n.01", "coco_cat_id": 43},
{"synset": "bottle.n.01", "coco_cat_id": 44},
{"synset": "wineglass.n.01", "coco_cat_id": 46},
{"synset": "cup.n.01", "coco_cat_id": 47},
{"synset": "fork.n.01", "coco_cat_id": 48},
{"synset": "knife.n.01", "coco_cat_id": 49},
{"synset": "spoon.n.01", "coco_cat_id": 50},
{"synset": "bowl.n.03", "coco_cat_id": 51},
{"synset": "banana.n.02", "coco_cat_id": 52},
{"synset": "apple.n.01", "coco_cat_id": 53},
{"synset": "sandwich.n.01", "coco_cat_id": 54},
{"synset": "orange.n.01", "coco_cat_id": 55},
{"synset": "broccoli.n.01", "coco_cat_id": 56},
{"synset": "carrot.n.01", "coco_cat_id": 57},
# {"synset": "frank.n.02", "coco_cat_id": 58},
{"synset": "sausage.n.01", "coco_cat_id": 58},
{"synset": "pizza.n.01", "coco_cat_id": 59},
{"synset": "doughnut.n.02", "coco_cat_id": 60},
{"synset": "cake.n.03", "coco_cat_id": 61},
{"synset": "chair.n.01", "coco_cat_id": 62},
{"synset": "sofa.n.01", "coco_cat_id": 63},
{"synset": "pot.n.04", "coco_cat_id": 64},
{"synset": "bed.n.01", "coco_cat_id": 65},
{"synset": "dining_table.n.01", "coco_cat_id": 67},
{"synset": "toilet.n.02", "coco_cat_id": 70},
{"synset": "television_receiver.n.01", "coco_cat_id": 72},
{"synset": "laptop.n.01", "coco_cat_id": 73},
{"synset": "mouse.n.04", "coco_cat_id": 74},
{"synset": "remote_control.n.01", "coco_cat_id": 75},
{"synset": "computer_keyboard.n.01", "coco_cat_id": 76},
{"synset": "cellular_telephone.n.01", "coco_cat_id": 77},
{"synset": "microwave.n.02", "coco_cat_id": 78},
{"synset": "oven.n.01", "coco_cat_id": 79},
{"synset": "toaster.n.02", "coco_cat_id": 80},
{"synset": "sink.n.01", "coco_cat_id": 81},
{"synset": "electric_refrigerator.n.01", "coco_cat_id": 82},
{"synset": "book.n.01", "coco_cat_id": 84},
{"synset": "clock.n.01", "coco_cat_id": 85},
{"synset": "vase.n.01", "coco_cat_id": 86},
{"synset": "scissors.n.01", "coco_cat_id": 87},
{"synset": "teddy.n.01", "coco_cat_id": 88},
{"synset": "hand_blower.n.01", "coco_cat_id": 89},
{"synset": "toothbrush.n.01", "coco_cat_id": 90},
]
def get_bbox(ann):
bbox = ann['bbox']
return [bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]]
if __name__ == '__main__':
file_name_key = 'file_name' if 'v0.5' in LVIS_PATH else 'coco_url'
coco_data = json.load(open(COCO_PATH, 'r'))
lvis_data = json.load(open(LVIS_PATH, 'r'))
coco_cats = coco_data['categories']
lvis_cats = lvis_data['categories']
num_find = 0
num_not_find = 0
num_twice = 0
coco2lviscats = {}
synset2lvisid = {x['synset']: x['id'] for x in lvis_cats}
# cocoid2synset = {x['coco_cat_id']: x['synset'] for x in COCO_SYNSET_CATEGORIES}
coco2lviscats = {x['coco_cat_id']: synset2lvisid[x['synset']] \
for x in COCO_SYNSET_CATEGORIES if x['synset'] in synset2lvisid}
print(len(coco2lviscats))
lvis_file2id = {x[file_name_key][-16:]: x['id'] for x in lvis_data['images']}
lvis_id2img = {x['id']: x for x in lvis_data['images']}
lvis_catid2name = {x['id']: x['name'] for x in lvis_data['categories']}
coco_file2anns = {}
coco_id2img = {x['id']: x for x in coco_data['images']}
coco_img2anns = defaultdict(list)
for ann in coco_data['annotations']:
coco_img = coco_id2img[ann['image_id']]
file_name = coco_img['file_name'][-16:]
if ann['category_id'] in coco2lviscats and \
file_name in lvis_file2id:
lvis_image_id = lvis_file2id[file_name]
lvis_image = lvis_id2img[lvis_image_id]
lvis_cat_id = coco2lviscats[ann['category_id']]
if lvis_cat_id in lvis_image['neg_category_ids']:
continue
if DEBUG:
import cv2
img_path = IMG_PATH + file_name
img = cv2.imread(img_path)
print(lvis_catid2name[lvis_cat_id])
print('neg', [lvis_catid2name[x] for x in lvis_image['neg_category_ids']])
cv2.imshow('img', img)
cv2.waitKey()
ann['category_id'] = lvis_cat_id
ann['image_id'] = lvis_image_id
coco_img2anns[file_name].append(ann)
lvis_img2anns = defaultdict(list)
for ann in lvis_data['annotations']:
lvis_img = lvis_id2img[ann['image_id']]
file_name = lvis_img[file_name_key][-16:]
lvis_img2anns[file_name].append(ann)
ann_id_count = 0
anns = []
for file_name in lvis_img2anns:
coco_anns = coco_img2anns[file_name]
lvis_anns = lvis_img2anns[file_name]
ious = pairwise_iou(
Boxes(torch.tensor([get_bbox(x) for x in coco_anns])),
Boxes(torch.tensor([get_bbox(x) for x in lvis_anns]))
)
for ann in lvis_anns:
ann_id_count = ann_id_count + 1
ann['id'] = ann_id_count
anns.append(ann)
for i, ann in enumerate(coco_anns):
if len(ious[i]) == 0 or ious[i].max() < THRESH:
ann_id_count = ann_id_count + 1
ann['id'] = ann_id_count
anns.append(ann)
else:
duplicated = False
for j in range(len(ious[i])):
if ious[i, j] >= THRESH and \
coco_anns[i]['category_id'] == lvis_anns[j]['category_id']:
duplicated = True
if not duplicated:
ann_id_count = ann_id_count + 1
ann['id'] = ann_id_count
anns.append(ann)
if NO_SEG:
for ann in anns:
del ann['segmentation']
lvis_data['annotations'] = anns
print('# Images', len(lvis_data['images']))
print('# Anns', len(lvis_data['annotations']))
json.dump(lvis_data, open(SAVE_PATH, 'w'))