Spaces:
Paused
Paused
File size: 8,771 Bytes
affe617 efed853 affe617 efed853 affe617 efed853 16c9cff efed853 16c9cff 7e8de53 afdf8c4 9f62051 afdf8c4 affe617 16c9cff 4639ead 16c9cff affe617 e6b26e0 affe617 16c9cff e6b26e0 affe617 e6b26e0 affe617 e6b26e0 affe617 e6b26e0 affe617 efed853 affe617 16c9cff efed853 16c9cff efed853 16c9cff efed853 16c9cff efed853 16c9cff afdf8c4 efed853 924a0c3 efed853 e6b26e0 16c9cff afdf8c4 efed853 afdf8c4 9f62051 afdf8c4 affe617 e6b26e0 fb7d350 16c9cff fb7d350 affe617 e6b26e0 affe617 e6b26e0 affe617 e6b26e0 fb7d350 afdf8c4 e6b26e0 afdf8c4 e6b26e0 affe617 e6b26e0 affe617 2adf285 affe617 f8116c4 2adf285 f8116c4 2adf285 f8116c4 affe617 7e8de53 affe617 2adf285 7e8de53 2adf285 affe617 7e8de53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import os
import re
import tempfile
import os
import arxiv
import gradio as gr
import requests
from anthropic import AI_PROMPT, HUMAN_PROMPT, Anthropic
from arxiv_latex_extractor import get_paper_content
from fastapi.staticfiles import StaticFiles
from huggingface_hub import HfApi
from coreservice import app
LEADING_PROMPT = "Read the following paper:"
def replace_texttt(text):
return re.sub(r"\\texttt\{(.*?)\}", r"*\1*", text)
def get_paper_info(paper_id):
# Create a search query with the arXiv ID
search = arxiv.Search(id_list=[paper_id])
# Fetch the paper using its arXiv ID
paper = next(search.results(), None)
if paper is not None:
# Return the paper's title and abstract
return paper.title, paper.summary
else:
return None, None
def get_paper_from_huggingface(paper_id):
try:
url = f"https://huggingface.co/datasets/taesiri/arxiv_db/raw/main/papers/{paper_id}.tex"
response = requests.get(url)
response.raise_for_status()
return response.text
except Exception as e:
return None
class ContextualQA:
def __init__(self, client, model="claude-2.0"):
self.client = client
self.model = model
self.context = ""
self.questions = []
self.responses = []
def load_text(self, text):
self.context = text
def ask_question(self, question):
if self.questions:
# For the first question-answer pair, don't add HUMAN_PROMPT before the question
first_pair = f"Question: {self.questions[0]}\n{AI_PROMPT} Answer: {self.responses[0]}"
# For subsequent questions, include both HUMAN_PROMPT and AI_PROMPT
subsequent_pairs = "\n".join(
[
f"{HUMAN_PROMPT} Question: {q}\n{AI_PROMPT} Answer: {a}"
for q, a in zip(self.questions[1:], self.responses[1:])
]
)
history_context = f"{first_pair}\n{subsequent_pairs}"
else:
history_context = ""
full_context = f"{self.context}\n\n{history_context}\n"
prompt = f"{HUMAN_PROMPT} {full_context} {HUMAN_PROMPT} {question} {AI_PROMPT}"
response = self.client.completions.create(
prompt=prompt,
stop_sequences=[HUMAN_PROMPT],
max_tokens_to_sample=6000,
model=self.model,
stream=False,
)
answer = response.completion
self.questions.append(question)
self.responses.append(answer)
return answer
def clear_context(self):
self.context = ""
self.questions = []
self.responses = []
def __getstate__(self):
state = self.__dict__.copy()
del state["client"]
return state
def __setstate__(self, state):
self.__dict__.update(state)
self.client = None
def clean_paper_id(raw_id):
# Remove any leading/trailing spaces
cleaned_id = raw_id.strip()
# Extract paper ID from ArXiv URL if present
match = re.search(r"arxiv\.org\/abs\/([\w\.]+)", cleaned_id)
if match:
cleaned_id = match.group(1)
else:
# Remove trailing dot if present
cleaned_id = re.sub(r"\.$", "", cleaned_id)
return cleaned_id
def load_context(paper_id):
global LEADING_PROMPT
# Clean the paper_id to remove spaces or extract ID from URL
paper_id = clean_paper_id(paper_id)
# Check if the paper is already on Hugging Face
latex_source = get_paper_from_huggingface(paper_id)
paper_downloaded = False
# If not found on Hugging Face, use arxiv_latex_extractor
if not latex_source:
try:
latex_source = get_paper_content(paper_id)
paper_downloaded = True
except Exception as e:
return None, [(f"Error loading paper with id {paper_id}: {e}",)]
if paper_downloaded:
# Save the LaTeX content to a temporary file
with tempfile.NamedTemporaryFile(
mode="w+", suffix=".tex", delete=False
) as tmp_file:
tmp_file.write(latex_source)
temp_file_path = tmp_file.name
# Upload the paper to Hugging Face
try:
if os.path.getsize(temp_file_path) > 1:
hf_api = HfApi(token=os.environ["HUGGINGFACE_TOKEN"])
hf_api.upload_file(
path_or_fileobj=temp_file_path,
path_in_repo=f"papers/{paper_id}.tex",
repo_id="taesiri/arxiv_db",
repo_type="dataset",
)
except Exception as e:
print(f"Error uploading paper with id {paper_id}: {e}")
# Initialize the Anthropic client and QA model
client = Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"])
qa_model = ContextualQA(client, model="claude-2.0")
context = f"{LEADING_PROMPT}\n{latex_source}"
qa_model.load_text(context)
# Get the paper's title and abstract
title, abstract = get_paper_info(paper_id)
title = replace_texttt(title)
abstract = replace_texttt(abstract)
return (
qa_model,
[
(
f"Load the paper with id {paper_id}.",
f"\n**Title**: {title}\n\n**Abstract**: {abstract}\n\nPaper loaded. You can now ask questions.",
)
],
)
def answer_fn(qa_model, question, chat_history):
# if question is empty, tell user that they need to ask a question
if question == "":
chat_history.append(("No Question Asked", "Please ask a question."))
return qa_model, chat_history, ""
client = Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"])
qa_model.client = client
try:
answer = qa_model.ask_question(question)
except Exception as e:
chat_history.append(("Error Asking Question", str(e)))
return qa_model, chat_history, ""
chat_history.append((question, answer))
return qa_model, chat_history, ""
def clear_context():
return []
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.HTML(
"""
<h1 style='text-align: center; font-size: 24px;'>
Explore ArXiv Papers in Depth with <code>claude-2.0</code> - Ask Questions and Get Answers Instantly
</h1>
"""
)
gr.HTML(
"""
<p style='text-align: justify; font-size: 18px; margin: 10px;'>
Explore the depths of ArXiv papers with our interactive app, powered by the advanced <code>claude-2.0</code> model. Ask detailed questions and get immediate, context-rich answers from academic papers.
</p>
"""
)
gr.HTML(
"""
<center>
<a href="https://huggingface.co/spaces/taesiri/ClaudeReadsArxiv?duplicate=true">
<img src="https://bit.ly/3gLdBN6" alt="Duplicate Space" style="vertical-align: middle; max-width: 100px; margin-right: 10px;">
</a>
<span style="font-size: 14px; vertical-align: middle;">
Duplicate the Space with your Anthropic API Key |
Follow me on Twitter for more updates: <a href="https://twitter.com/taesiri" target="_blank">@taesiri</a>
</span>
</center>
"""
)
with gr.Column():
with gr.Row():
paper_id_input = gr.Textbox(label="Enter Paper ID", value="2310.12103")
btn_load = gr.Button("Load Paper")
qa_model = gr.State()
with gr.Column():
chatbot = gr.Chatbot().style(color_map=("blue", "yellow"))
question_txt = gr.Textbox(
label="Question", lines=1, placeholder="Type your question here..."
)
btn_answer = gr.Button("Answer Question")
btn_clear = gr.Button("Clear Chat")
gr.HTML(
"""<center>All the inputs are being sent to Anthropic's Claude endpoints. Please refer to <a href="https://legal.anthropic.com/#privacy">this link</a> for privacy policy.</center>"""
)
gr.Markdown(
"## Acknowledgements\n"
"This project is made possible through the generous support of "
"[Anthropic](https://www.anthropic.com/), who provided free access to the `claude-2.0` API."
)
btn_load.click(load_context, inputs=[paper_id_input], outputs=[qa_model, chatbot])
btn_answer.click(
answer_fn,
inputs=[qa_model, question_txt, chatbot],
outputs=[qa_model, chatbot, question_txt],
)
question_txt.submit(
answer_fn,
inputs=[qa_model, question_txt, chatbot],
outputs=[qa_model, chatbot, question_txt],
)
btn_clear.click(clear_context, outputs=[chatbot])
app.mount("/js", StaticFiles(directory="js"), name="js")
gr.mount_gradio_app(app, demo, path="/")
|