Spaces:
Paused
Paused
File size: 6,662 Bytes
affe617 afdf8c4 affe617 afdf8c4 affe617 afdf8c4 fb7d350 affe617 afdf8c4 affe617 fb7d350 afdf8c4 fb7d350 affe617 fb7d350 afdf8c4 affe617 fb7d350 affe617 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import io
import os
import re
import tarfile
import anthropic
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import openai
import pandas as pd
import requests
import seaborn as sns
from tqdm import tqdm
import arxiv
def get_paper_info(paper_id):
# Create a search query with the arXiv ID
search = arxiv.Search(id_list=[paper_id])
# Fetch the paper using its arXiv ID
paper = next(search.results(), None)
if paper is not None:
# Return the paper's title and abstract
return paper.title, paper.summary
else:
return None, None
def download_arxiv_source(paper_id):
url = f"https://arxiv.org/e-print/{paper_id}"
# Get the tar file
response = requests.get(url)
response.raise_for_status()
# Open the tar file
tar = tarfile.open(fileobj=io.BytesIO(response.content), mode="r")
# Load all .tex files into memory, including their subdirectories
tex_files = {
member.name: tar.extractfile(member).read().decode("utf-8")
for member in tar.getmembers()
if member.name.endswith(".tex")
}
# Pattern to match \input{filename} and \include{filename}
pattern = re.compile(r"\\(input|include){(.*?)}")
# Function to replace \input{filename} and \include{filename} with file contents
def replace_includes(text):
output = []
for line in text.split("\n"):
match = re.search(pattern, line)
if match:
command, filename = match.groups()
# LaTeX automatically adds .tex extension for \include command
if command == "include":
filename += ".tex"
if filename in tex_files:
output.append(replace_includes(tex_files[filename]))
else:
output.append(f"% {line} % FILE NOT FOUND")
else:
output.append(line)
return "\n".join(output)
if "main.tex" in tex_files:
# Start with the contents of main.tex
main_tex = replace_includes(tex_files["main.tex"])
else:
# No main.tex, concatenate all .tex files
main_tex = "\n".join(replace_includes(text) for text in tex_files.values())
return main_tex
class ContextualQA:
def __init__(self, client, model="claude-v1.3-100k"):
self.client = client
self.model = model
self.context = ""
self.questions = []
self.responses = []
def load_text(self, text):
self.context = text
def ask_question(self, question):
leading_prompt = "Consider the following paper:"
trailing_prompt = "Now, answer the following question using Markdown syntax:"
prompt = f"{anthropic.HUMAN_PROMPT} {leading_prompt}\n\n{self.context}\n\n{trailing_prompt}\n\n{anthropic.HUMAN_PROMPT} {question} {anthropic.AI_PROMPT}"
response = self.client.completion_stream(
prompt=prompt,
stop_sequences=[anthropic.HUMAN_PROMPT],
max_tokens_to_sample=6000,
model=self.model,
stream=False,
)
responses = [data for data in response]
self.questions.append(question)
self.responses.append(responses)
return responses
def clear_context(self):
self.context = ""
self.questions = []
self.responses = []
def __getstate__(self):
state = self.__dict__.copy()
del state["client"]
return state
def __setstate__(self, state):
self.__dict__.update(state)
self.client = None
def load_context(paper_id):
try:
latex_source = download_arxiv_source(paper_id)
except Exception as e:
return None, [(f"Error loading paper with id {paper_id}.", str(e))]
client = anthropic.Client(api_key=os.environ["ANTHROPIC_API_KEY"])
model = ContextualQA(client, model="claude-v1.3-100k")
model.load_text(latex_source)
# Usage
title, abstract = get_paper_info(paper_id)
return (
model,
[
(
f"Load the paper with id {paper_id}.",
f"\n**Title**: {title}\n\n**Abstract**: {abstract}\n\nPaper loaded, You can now ask questions.",
)
],
)
def answer_fn(model, question, chat_history):
# if question is empty, tell user that they need to ask a question
if question == "":
chat_history.append(("No Question Asked", "Please ask a question."))
return model, chat_history, ""
client = anthropic.Client(api_key=os.environ["ANTHROPIC_API_KEY"])
model.client = client
try:
response = model.ask_question(question)
except Exception as e:
chat_history.append(("Error Asking Question", str(e)))
return model, chat_history, ""
chat_history.append((question, response[0]["completion"]))
return model, chat_history, ""
def clear_context():
return []
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"# Explore ArXiv Papers in Depth with `claude-v1.3-100k` - Ask Questions and Receive Detailed Answers Instantly"
)
gr.Markdown(
"Dive into the world of academic papers with our dynamic app, powered by the cutting-edge `claude-v1.3-100k` model. This app allows you to ask detailed questions about any ArXiv paper and receive direct answers from the paper's content. Utilizing a context length of 100k tokens, it provides an efficient and comprehensive exploration of complex research studies, making knowledge acquisition simpler and more interactive. (This text is generated by GPT-4 )"
)
with gr.Column():
with gr.Row():
paper_id_input = gr.Textbox(label="Enter Paper ID", value="2108.07258")
btn_load = gr.Button("Load Paper")
qa_model = gr.State()
with gr.Column():
chatbot = gr.Chatbot().style(color_map=("blue", "yellow"))
question_txt = gr.Textbox(
label="Question", lines=1, placeholder="Type your question here..."
)
btn_answer = gr.Button("Answer Question")
btn_clear = gr.Button("Clear Chat")
btn_load.click(load_context, inputs=[paper_id_input], outputs=[qa_model, chatbot])
btn_answer.click(
answer_fn,
inputs=[qa_model, question_txt, chatbot],
outputs=[qa_model, chatbot, question_txt],
)
question_txt.submit(
answer_fn,
inputs=[qa_model, question_txt, chatbot],
outputs=[qa_model, chatbot, question_txt],
)
btn_clear.click(clear_context, outputs=[chatbot])
demo.launch()
|