File size: 7,308 Bytes
f96280e
 
 
defdeae
f96280e
defdeae
f96280e
 
defdeae
 
f96280e
 
defdeae
 
 
 
 
 
 
 
 
 
 
 
 
f96280e
 
 
defdeae
 
 
f96280e
defdeae
f96280e
defdeae
 
 
f96280e
defdeae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f96280e
defdeae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f96280e
 
 
 
defdeae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f96280e
defdeae
 
 
 
f96280e
defdeae
 
 
 
 
 
 
 
f96280e
defdeae
 
 
 
f96280e
 
 
defdeae
 
 
 
 
 
 
 
 
 
f96280e
defdeae
 
 
 
 
 
 
 
 
 
 
f96280e
defdeae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f96280e
 
defdeae
 
f96280e
 
 
 
 
defdeae
 
 
f96280e
defdeae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f96280e
defdeae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f96280e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import base64
import io
import json
import os

import gradio as gr
import matplotlib.pyplot as plt
import spaces
import torch
from huggingface_hub import login
from PIL import Image
from transformers import AutoProcessor, MllamaForConditionalGeneration


def check_environment():
    required_vars = ["HF_TOKEN"]
    missing_vars = [var for var in required_vars if var not in os.environ]

    if missing_vars:
        raise ValueError(
            f"Missing required environment variables: {', '.join(missing_vars)}\n"
            "Please set the HF_TOKEN environment variable with your Hugging Face token"
        )


# Login to Hugging Face
check_environment()
login(token=os.environ["HF_TOKEN"], add_to_git_credential=True)


import torch
from transformers import AutoProcessor, MllamaForConditionalGeneration

base_model_path = "taesiri/FireNet-LLama-3.2-11B-Vision-Base"

processor = AutoProcessor.from_pretrained(base_model_path)
model = MllamaForConditionalGeneration.from_pretrained(
    base_model_path, torch_dtype=torch.bfloat16, device_map="cuda"
)

model.tie_weights()


def create_color_palette_image(colors):
    if not colors or not isinstance(colors, list):
        return None

    try:
        # Validate color format
        for color in colors:
            if not isinstance(color, str) or not color.startswith("#"):
                return None

        # Create figure and axis
        fig, ax = plt.subplots(figsize=(10, 2))

        # Create rectangles for each color
        for i, color in enumerate(colors):
            ax.add_patch(plt.Rectangle((i, 0), 1, 1, facecolor=color))

        # Set the view limits and aspect ratio
        ax.set_xlim(0, len(colors))
        ax.set_ylim(0, 1)
        ax.set_xticks([])
        ax.set_yticks([])

        return fig  # Return the matplotlib figure directly
    except Exception as e:
        print(f"Error creating color palette: {e}")
        return None


@spaces.GPU
def inference(image):
    if image is None:
        return ["Please provide an image"] * 4

    if not isinstance(image, Image.Image):
        try:
            image = Image.fromarray(image)
        except Exception as e:
            print(f"Image conversion error: {e}")
            return ["Invalid image format"] * 4

    # Prepare input
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image"},
                {
                    "type": "text",
                    "text": "Analyze this image for fire, smoke, haze, or other related conditions.",
                },
            ],
        }
    ]
    input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
    try:
        # Move inputs to the correct device
        inputs = processor(
            image, input_text, add_special_tokens=False, return_tensors="pt"
        ).to(model.device)

        # Clear CUDA cache after inference
        with torch.no_grad():
            output = model.generate(**inputs, max_new_tokens=2048)
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    except Exception as e:
        print(f"Inference error: {e}")
        return ["Error during inference"] * 4

    # Decode output
    result = processor.decode(output[0], skip_special_tokens=True)
    print("DEBUG: Full decoded output:", result)

    try:
        json_str = result.strip().split("assistant\n")[1].strip()
        parsed_json = json.loads(json_str)

        # Create specific JSON subsets for each section
        fire_analysis = {
            "predictions": parsed_json.get("predictions", "N/A"),
            "description": parsed_json.get("description", "No description available"),
            "confidence_scores": parsed_json.get("confidence_score", {}),
        }

        environment_analysis = {
            "environmental_factors": parsed_json.get("environmental_factors", {})
        }

        detection_analysis = {
            "detections": parsed_json.get("detections", []),
            "detection_count": len(parsed_json.get("detections", [])),
        }

        report_analysis = {
            "uncertainty_factors": parsed_json.get("uncertainty_factors", []),
            "false_positive_indicators": parsed_json.get(
                "false_positive_indicators", []
            ),
        }

        return (
            json.dumps(fire_analysis, indent=2),
            json.dumps(environment_analysis, indent=2),
            json.dumps(detection_analysis, indent=2),
            json.dumps(report_analysis, indent=2),
            json_str,
            "",
            "Analysis complete",
            parsed_json,
        )
    except Exception as e:
        print("DEBUG: Error processing response:", e)
        return (
            "Error processing response",
            "",
            "",
            "",
            str(result),
            str(e),
            "Error",
            {},
        )


# Update Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Fire Detection Demo")

    with gr.Row():
        with gr.Column(scale=1):
            image_input = gr.Image(
                type="pil",
                label="Upload Image",
                elem_id="large-image",
            )
            submit_btn = gr.Button("Analyze Image", variant="primary")

            # Updated examples
            gr.Examples(
                examples=[
                    "examples/1727808849.jpg",
                    "examples/1727809389.jpg",
                    "examples/Birch MWF014-0001.jpg",
                    "examples/frame_000036.jpg",
                    "examples/frame_000168.jpg",
                ],
                inputs=image_input,
                label="Example Images",
                examples_per_page=5,
            )

    with gr.Tabs() as tabs:
        with gr.Tab("Analysis Results"):
            with gr.Row():
                with gr.Column():
                    fire_output = gr.JSON(
                        label="Fire Details",
                    )
                with gr.Column():
                    environment_output = gr.JSON(
                        label="Environment Details",
                    )
            with gr.Row():
                with gr.Column():
                    detection_output = gr.JSON(
                        label="Detection Details",
                    )
                with gr.Column():
                    report_output = gr.JSON(
                        label="Report Details",
                    )

        with gr.Tab("JSON Output", id=0):
            json_output = gr.JSON(
                label="Detailed JSON Results",
            )

        with gr.Tab("Raw Output"):
            raw_output = gr.Textbox(
                label="Raw JSON Response",
                lines=10,
            )

    error_box = gr.Textbox(label="Error Messages", visible=False)
    status_text = gr.Textbox(label="Status", value="Ready", interactive=False)

    submit_btn.click(
        fn=inference,
        inputs=[image_input],
        outputs=[
            fire_output,
            environment_output,
            detection_output,
            report_output,
            raw_output,
            error_box,
            status_text,
            json_output,
        ],
    )

demo.launch(share=True)