New App
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from torchvision import transforms
|
7 |
+
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
|
8 |
+
import segmentation_models_pytorch as smp
|
9 |
+
|
10 |
+
def load_model(model_type):
|
11 |
+
# Model loading simplified for clarity
|
12 |
+
model = sam_model_registry[model_type](checkpoint=f"sam_{model_type}_checkpoint.pth")
|
13 |
+
model.to(device='cuda')
|
14 |
+
return SamAutomaticMaskGenerator(model)
|
15 |
+
|
16 |
+
def segment_and_classify(image, model_type):
|
17 |
+
model = load_model(model_type)
|
18 |
+
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
19 |
+
|
20 |
+
# Generate masks
|
21 |
+
masks = model.generate(image_cv)
|
22 |
+
|
23 |
+
# Prepare to store segments
|
24 |
+
segments = []
|
25 |
+
|
26 |
+
# Loop through masks and extract segments
|
27 |
+
for mask_data in masks:
|
28 |
+
mask = mask_data['segmentation']
|
29 |
+
segment = image_cv * np.tile(mask[:, :, None], [1, 1, 3]) # Apply mask to the image
|
30 |
+
segments.append(segment) # Store the segment for classification
|
31 |
+
|
32 |
+
# Here you would call the classification model (e.g., CLIP)
|
33 |
+
# For now, let's just return the first segment for visualization
|
34 |
+
return Image.fromarray(segments[0])
|
35 |
+
|
36 |
+
iface = gr.Interface(
|
37 |
+
fn=segment_and_classify,
|
38 |
+
inputs=[gr.inputs.Image(type="pil"), gr.inputs.Dropdown(['vit_h', 'vit_b', 'vit_l'], label="Model Type")],
|
39 |
+
outputs=gr.outputs.Image(type="pil"),
|
40 |
+
title="SAM Model Segmentation and Classification",
|
41 |
+
description="Upload an image, select a model type, and receive the segmented and classified parts."
|
42 |
+
)
|
43 |
+
|
44 |
+
iface.launch()
|