tahirsher commited on
Commit
2041519
·
verified ·
1 Parent(s): 3e60283

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +60 -61
app.py CHANGED
@@ -1,64 +1,63 @@
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ import os
2
+ import whisper
3
+ from gtts import gTTS
4
  import gradio as gr
5
+ from groq import Groq
6
+
7
+ # Load the Whisper model for speech-to-text
8
+ whisper_model = whisper.load_model("large")
9
+
10
+ # Initialize Groq client for text generation
11
+ GROQ_API_KEY = "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"
12
+ client = Groq(api_key=GROQ_API_KEY)
13
+
14
+ # Function to convert text to speech using gTTS and return the audio path
15
+ def text_to_speech(text):
16
+ tts = gTTS(text)
17
+ response_audio_path = "response.mp3"
18
+ tts.save(response_audio_path)
19
+ return response_audio_path
20
+
21
+ # Function to transcribe audio to text using Whisper
22
+ def transcribe_audio(audio):
23
+ print("Transcribing audio...")
24
+ result = whisper_model.transcribe(audio)
25
+ return result["text"]
26
+
27
+ # Function to get a response from the Groq API using LLaMA model
28
+ def get_response_from_groq(input_text):
29
+ chat_completion = client.chat.completions.create(
30
+ messages=[{"role": "user", "content": input_text}],
31
+ model="llama3-8b-8192",
32
+ )
33
+ response = chat_completion.choices[0].message.content
34
+ return response
35
+
36
+ # Gradio function to handle chatbot interaction
37
+ def chatbot(audio):
38
+ # Step 1: Transcribe audio to text using Whisper
39
+ user_input = transcribe_audio(audio)
40
+ print(f"User said: {user_input}")
41
+
42
+ # Step 2: Get chatbot response from Groq (LLaMA model)
43
+ response = get_response_from_groq(user_input)
44
+ print(f"Chatbot response: {response}")
45
+
46
+ # Step 3: Convert response text to speech and return audio
47
+ response_audio_path = text_to_speech(response)
48
+
49
+ # Return text response and audio file for playback
50
+ return response, response_audio_path
51
+
52
+ # Gradio interface for the chatbot
53
+ interface = gr.Interface(
54
+ fn=chatbot,
55
+ inputs=gr.Audio(source="microphone", type="filepath"), # Using microphone as input
56
+ outputs=["text", gr.Audio(type="filepath")], # Text and audio output
57
+ live=True,
58
+ title="Voice-Enabled Chatbot",
59
+ description="Speak into your microphone, and the chatbot will respond with both text and audio."
 
 
 
60
  )
61
 
62
+ # Launch Gradio interface
63
+ interface.launch(share=True)