tahirsher commited on
Commit
9a55802
·
verified ·
1 Parent(s): f0e95d1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -12
app.py CHANGED
@@ -1,19 +1,13 @@
1
  import streamlit as st
2
- from transformers import AutoModelForCausalLM, AutoTokenizer
3
 
4
- # Initialize model and tokenizer
5
- model_name = "RichardErkhov/mrm8488_-_gpt2-finetuned-recipes-cooking"
6
- tokenizer = AutoTokenizer.from_pretrained(model_name)
7
- model = AutoModelForCausalLM.from_pretrained(model_name)
8
 
9
  def generate_recipe(dish_name):
10
- # Tokenize input
11
- inputs = tokenizer(f"Recipe for {dish_name}:", return_tensors="pt")
12
- outputs = model.generate(**inputs, max_length=300)
13
-
14
- # Decode generated text
15
- recipe = tokenizer.decode(outputs[0], skip_special_tokens=True)
16
- return recipe
17
 
18
  # Streamlit app
19
  st.title("Cooking Recipe Generator")
 
1
  import streamlit as st
2
+ from transformers import pipeline
3
 
4
+ # Initialize the text generation pipeline with the GPT-2 fine-tuned recipe model
5
+ pipe = pipeline("text-generation", model="mrm8488/gpt2-finetuned-recipes-cooking_v2")
 
 
6
 
7
  def generate_recipe(dish_name):
8
+ # Generate recipe using the text-generation pipeline
9
+ recipe = pipe(f"Recipe for {dish_name}:", max_length=300, num_return_sequences=1)
10
+ return recipe[0]['generated_text']
 
 
 
 
11
 
12
  # Streamlit app
13
  st.title("Cooking Recipe Generator")