Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,19 @@
|
|
1 |
import streamlit as st
|
2 |
-
from
|
3 |
|
4 |
-
# Initialize
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
)
|
9 |
|
10 |
def generate_recipe(dish_name):
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
# Get the recipe from the model
|
19 |
-
response = llm.create_chat_completion(messages=messages)
|
20 |
-
return response['choices'][0]['message']['content']
|
21 |
|
22 |
# Streamlit app
|
23 |
st.title("Cooking Recipe Generator")
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
+
# Initialize model and tokenizer
|
5 |
+
model_name = "RichardErkhov/mrm8488_-_gpt2-finetuned-recipes-cooking"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
8 |
|
9 |
def generate_recipe(dish_name):
|
10 |
+
# Tokenize input
|
11 |
+
inputs = tokenizer(f"Recipe for {dish_name}:", return_tensors="pt")
|
12 |
+
outputs = model.generate(**inputs, max_length=300)
|
13 |
+
|
14 |
+
# Decode generated text
|
15 |
+
recipe = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
16 |
+
return recipe
|
|
|
|
|
|
|
17 |
|
18 |
# Streamlit app
|
19 |
st.title("Cooking Recipe Generator")
|