Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from rank_bm25 import BM25Okapi
|
3 |
+
from transformers import pipeline
|
4 |
+
import streamlit as st
|
5 |
+
from datasets import load_dataset
|
6 |
+
|
7 |
+
# Load Dataset from Hugging Face with Error Handling
|
8 |
+
def load_huggingface_dataset(dataset_name, config=None, split="train"):
|
9 |
+
try:
|
10 |
+
if config:
|
11 |
+
dataset = load_dataset(dataset_name, config, split=split)
|
12 |
+
else:
|
13 |
+
dataset = load_dataset(dataset_name, split=split)
|
14 |
+
|
15 |
+
data = pd.DataFrame(dataset) # Convert to pandas DataFrame
|
16 |
+
return data
|
17 |
+
except Exception as e:
|
18 |
+
st.error(f"Failed to load dataset '{dataset_name}' with config '{config}'. Please try 'lex_glue' or 'eurlex' with appropriate config.")
|
19 |
+
st.error(f"Error details: {e}")
|
20 |
+
return None
|
21 |
+
|
22 |
+
# Prepare the Retrieval Model (BM25)
|
23 |
+
def prepare_bm25(corpus):
|
24 |
+
tokenized_corpus = [doc.split(" ") for doc in corpus]
|
25 |
+
bm25 = BM25Okapi(tokenized_corpus)
|
26 |
+
return bm25
|
27 |
+
|
28 |
+
# Search for Similar Documents
|
29 |
+
def search_documents(bm25, query, corpus, top_n=5):
|
30 |
+
tokenized_query = query.split(" ")
|
31 |
+
scores = bm25.get_top_n(tokenized_query, corpus, n=top_n)
|
32 |
+
return scores
|
33 |
+
|
34 |
+
# Summarization Model
|
35 |
+
def summarize_text(text):
|
36 |
+
try:
|
37 |
+
# Use a public model for summarization
|
38 |
+
summarizer = pipeline("summarization", model="t5-base") # Change to a public model
|
39 |
+
summary = summarizer(text, max_length=130, min_length=30, do_sample=False)
|
40 |
+
return summary[0]['summary_text']
|
41 |
+
except Exception as e:
|
42 |
+
st.error(f"Error in summarization: {e}")
|
43 |
+
return "Summary could not be generated."
|
44 |
+
|
45 |
+
# Streamlit App
|
46 |
+
def main():
|
47 |
+
st.title("Legal Case Summarizer")
|
48 |
+
|
49 |
+
# Dataset Selection
|
50 |
+
dataset_name = st.selectbox("Choose Hugging Face dataset", ["lex_glue", "eurlex"])
|
51 |
+
config = None
|
52 |
+
|
53 |
+
# Config Selection for lex_glue
|
54 |
+
if dataset_name == "lex_glue":
|
55 |
+
config = st.selectbox("Select config for lex_glue", ["case_hold", "ecthr_a", "ecthr_b", "eurlex", "ledgar", "scotus", "unfair_tos"])
|
56 |
+
|
57 |
+
split = st.selectbox("Choose dataset split", ["train", "validation", "test"])
|
58 |
+
|
59 |
+
if dataset_name:
|
60 |
+
st.write("Loading dataset from Hugging Face...")
|
61 |
+
data = load_huggingface_dataset(dataset_name, config=config, split=split)
|
62 |
+
|
63 |
+
if data is not None:
|
64 |
+
corpus = data['text'].tolist() if 'text' in data.columns else data.iloc[:, 0].tolist()
|
65 |
+
titles = data['title'].tolist() if 'title' in data.columns else ["Title " + str(i) for i in range(len(corpus))]
|
66 |
+
|
67 |
+
# Prepare BM25 Model
|
68 |
+
bm25 = prepare_bm25(corpus)
|
69 |
+
|
70 |
+
# User Input
|
71 |
+
query = st.text_input("Enter keywords for case search:")
|
72 |
+
num_results = st.slider("Number of results to display", 1, 10, 5)
|
73 |
+
|
74 |
+
if query:
|
75 |
+
st.write("Searching for relevant cases...")
|
76 |
+
results = search_documents(bm25, query, corpus, top_n=num_results)
|
77 |
+
|
78 |
+
for idx, result in enumerate(results):
|
79 |
+
st.write(f"### Case {idx+1}: {titles[corpus.index(result)]}")
|
80 |
+
st.write(result)
|
81 |
+
|
82 |
+
# Summarize the case
|
83 |
+
st.write("Summary:")
|
84 |
+
summary = summarize_text(result)
|
85 |
+
st.write(summary)
|
86 |
+
|
87 |
+
if __name__ == "__main__":
|
88 |
+
main()
|