Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import fitz # PyMuPDF for PDF processing
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import pytesseract
|
| 4 |
+
from transformers import pipeline, Blip2Processor, Blip2ForConditionalGeneration
|
| 5 |
+
import streamlit as st
|
| 6 |
+
import os
|
| 7 |
+
import re
|
| 8 |
+
from docx import Document
|
| 9 |
+
from langdetect import detect
|
| 10 |
+
import asyncio # For asynchronous processing
|
| 11 |
+
|
| 12 |
+
# Initialize BLIP-2 model and processor for image-to-text
|
| 13 |
+
@st.cache(allow_output_mutation=True)
|
| 14 |
+
def load_blip2_model():
|
| 15 |
+
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
| 16 |
+
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b")
|
| 17 |
+
return processor, model
|
| 18 |
+
|
| 19 |
+
processor, model = load_blip2_model()
|
| 20 |
+
|
| 21 |
+
# Initialize translation pipeline for Korean to English
|
| 22 |
+
@st.cache(allow_output_mutation=True)
|
| 23 |
+
def load_translation_model():
|
| 24 |
+
return pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
| 25 |
+
|
| 26 |
+
translator = load_translation_model()
|
| 27 |
+
|
| 28 |
+
# Path to Tesseract executable for OCR
|
| 29 |
+
pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract"
|
| 30 |
+
|
| 31 |
+
def extract_text_from_image(image):
|
| 32 |
+
"""Extract text from image using OCR or BLIP-2."""
|
| 33 |
+
# First try using BLIP-2
|
| 34 |
+
image = image.convert("RGB")
|
| 35 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 36 |
+
generated_ids = model.generate(**inputs)
|
| 37 |
+
decoded_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 38 |
+
|
| 39 |
+
# Fallback to OCR if BLIP-2 extraction fails
|
| 40 |
+
if not decoded_text.strip():
|
| 41 |
+
decoded_text = pytesseract.image_to_string(image, lang='kor+eng')
|
| 42 |
+
|
| 43 |
+
return decoded_text.strip()
|
| 44 |
+
|
| 45 |
+
def extract_from_pdf(pdf_path):
|
| 46 |
+
"""Extract text from PDF by combining direct extraction and OCR fallback."""
|
| 47 |
+
doc = fitz.open(pdf_path)
|
| 48 |
+
full_text = ""
|
| 49 |
+
|
| 50 |
+
for page_num in range(len(doc)):
|
| 51 |
+
page = doc.load_page(page_num)
|
| 52 |
+
|
| 53 |
+
# Try extracting text directly
|
| 54 |
+
text = page.get_text()
|
| 55 |
+
|
| 56 |
+
# If no text, fallback to OCR
|
| 57 |
+
if not text.strip():
|
| 58 |
+
pix = page.get_pixmap()
|
| 59 |
+
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 60 |
+
text = extract_text_from_image(image)
|
| 61 |
+
|
| 62 |
+
full_text += text + "\n"
|
| 63 |
+
return full_text.strip()
|
| 64 |
+
|
| 65 |
+
def extract_from_word(docx_path):
|
| 66 |
+
doc = Document(docx_path)
|
| 67 |
+
full_text = ""
|
| 68 |
+
for para in doc.paragraphs:
|
| 69 |
+
full_text += para.text + "\n"
|
| 70 |
+
return full_text.strip()
|
| 71 |
+
|
| 72 |
+
def clean_text(text):
|
| 73 |
+
return re.sub(r'[\x00-\x1f\x7f-\x9f]', '', text).strip()
|
| 74 |
+
|
| 75 |
+
def translate_text(text):
|
| 76 |
+
if not text.strip():
|
| 77 |
+
return "No text available for translation."
|
| 78 |
+
|
| 79 |
+
detected_language = detect(text)
|
| 80 |
+
st.write(f"Detected language: {detected_language}")
|
| 81 |
+
|
| 82 |
+
if detected_language == "en":
|
| 83 |
+
return "The text is already in English."
|
| 84 |
+
|
| 85 |
+
chunks = [text[i:i + 50000] for i in range(0, len(text), 50000)]
|
| 86 |
+
translated_text = ""
|
| 87 |
+
for chunk in chunks:
|
| 88 |
+
translated_chunk = translator(chunk, max_length=400)
|
| 89 |
+
if isinstance(translated_chunk, list) and 'translation_text' in translated_chunk[0]:
|
| 90 |
+
translated_text += translated_chunk[0]['translation_text'] + " "
|
| 91 |
+
return translated_text.strip()
|
| 92 |
+
|
| 93 |
+
def create_pdf(translated_text, output_path):
|
| 94 |
+
doc = fitz.open()
|
| 95 |
+
page = doc.new_page()
|
| 96 |
+
|
| 97 |
+
# Define text insertion rectangle
|
| 98 |
+
rect = fitz.Rect(50, 50, 550, 750)
|
| 99 |
+
|
| 100 |
+
# Insert text using the defined rectangle
|
| 101 |
+
page.insert_textbox(
|
| 102 |
+
rect, translated_text,
|
| 103 |
+
fontsize=12,
|
| 104 |
+
fontname="helv",
|
| 105 |
+
color=(0, 0, 0),
|
| 106 |
+
)
|
| 107 |
+
doc.save(output_path)
|
| 108 |
+
|
| 109 |
+
async def process_document(uploaded_file):
|
| 110 |
+
file_extension = uploaded_file.name.split(".")[-1].lower()
|
| 111 |
+
temp_file_path = f"temp.{file_extension}"
|
| 112 |
+
with open(temp_file_path, "wb") as f:
|
| 113 |
+
f.write(uploaded_file.getbuffer())
|
| 114 |
+
|
| 115 |
+
try:
|
| 116 |
+
if file_extension == "pdf":
|
| 117 |
+
extracted_text = extract_from_pdf(temp_file_path)
|
| 118 |
+
elif file_extension in ["jpg", "jpeg", "png"]:
|
| 119 |
+
image = Image.open(temp_file_path)
|
| 120 |
+
extracted_text = extract_text_from_image(image)
|
| 121 |
+
elif file_extension == "docx":
|
| 122 |
+
extracted_text = extract_from_word(temp_file_path)
|
| 123 |
+
else:
|
| 124 |
+
st.error("Unsupported file format.")
|
| 125 |
+
return
|
| 126 |
+
|
| 127 |
+
extracted_text = clean_text(extracted_text)
|
| 128 |
+
st.write("Extracted Text (First 50000 characters):", extracted_text[:50000])
|
| 129 |
+
|
| 130 |
+
translated_text = translate_text(extracted_text)
|
| 131 |
+
|
| 132 |
+
st.subheader("Translated Text (English)")
|
| 133 |
+
st.write(translated_text)
|
| 134 |
+
|
| 135 |
+
if translated_text.strip():
|
| 136 |
+
output_pdf_path = "translated_document.pdf"
|
| 137 |
+
create_pdf(translated_text, output_pdf_path)
|
| 138 |
+
|
| 139 |
+
with open(output_pdf_path, "rb") as f:
|
| 140 |
+
st.download_button(
|
| 141 |
+
label="Download Translated PDF",
|
| 142 |
+
data=f,
|
| 143 |
+
file_name="translated_document.pdf",
|
| 144 |
+
mime="application/pdf"
|
| 145 |
+
)
|
| 146 |
+
else:
|
| 147 |
+
st.warning("No content to save in the translated PDF.")
|
| 148 |
+
finally:
|
| 149 |
+
if os.path.exists(temp_file_path):
|
| 150 |
+
os.remove(temp_file_path)
|
| 151 |
+
if os.path.exists("translated_document.pdf"):
|
| 152 |
+
os.remove("translated_document.pdf")
|
| 153 |
+
|
| 154 |
+
st.title("Multilingual Document Translator")
|
| 155 |
+
uploaded_file = st.file_uploader("Upload a document (PDF, Word, or Image)", type=["pdf", "docx", "jpg", "jpeg", "png"])
|
| 156 |
+
|
| 157 |
+
if uploaded_file is not None:
|
| 158 |
+
with st.spinner("Processing document..."):
|
| 159 |
+
asyncio.run(process_document(uploaded_file))
|