Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
|
4 |
+
# Load Hugging Face Model
|
5 |
+
@st.cache_resource
|
6 |
+
def load_model():
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("xsanskarx/calculator-smollm2_v2")
|
8 |
+
model = AutoModelForCausalLM.from_pretrained("xsanskarx/calculator-smollm2_v2")
|
9 |
+
return tokenizer, model
|
10 |
+
|
11 |
+
tokenizer, model = load_model()
|
12 |
+
|
13 |
+
def calculate_expression(expression: str) -> str:
|
14 |
+
# Encode the user input and generate the result
|
15 |
+
input_ids = tokenizer.encode(expression, return_tensors="pt")
|
16 |
+
output_ids = model.generate(input_ids, max_new_tokens=50)
|
17 |
+
result = tokenizer.decode(output_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
18 |
+
return result
|
19 |
+
|
20 |
+
# Streamlit Interface
|
21 |
+
st.title("AI-Powered Calculator")
|
22 |
+
st.write("Enter a mathematical expression, and let the model solve it.")
|
23 |
+
|
24 |
+
expression = st.text_input("Enter Expression (e.g., 5 + 3 * (2 - 1)):")
|
25 |
+
|
26 |
+
if st.button("Calculate"):
|
27 |
+
if expression.strip():
|
28 |
+
try:
|
29 |
+
result = calculate_expression(expression)
|
30 |
+
st.success(f"Result: {result}")
|
31 |
+
except Exception as e:
|
32 |
+
st.error(f"Error: {str(e)}")
|
33 |
+
else:
|
34 |
+
st.warning("Please enter a valid expression.")
|