tahiryaqoob commited on
Commit
1ee4d14
Β·
verified Β·
1 Parent(s): adccf9e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -7
app.py CHANGED
@@ -5,7 +5,6 @@ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, Trainer, Training
5
  from transformers import pipeline
6
  from sklearn.model_selection import train_test_split
7
 
8
- Load and preprocess the dataset
9
  def load_and_preprocess_data():
10
  dataset = load_dataset('tahiryaqoob/BISELahore')
11
  train_dataset, val_dataset = train_test_split(dataset['train'], test_size=0.2, random_state=42)
@@ -14,14 +13,13 @@ def load_and_preprocess_data():
14
  print(f"Validation samples: {len(val_dataset)}")
15
  return train_dataset, val_dataset
16
 
17
- Preprocess the data to format for fine-tuning
18
  def preprocess_function(examples, tokenizer):
19
  inputs = tokenizer(examples['question'], padding="max_length", truncation=True, max_length=128)
20
  targets = tokenizer(examples['answer'], padding="max_length", truncation=True, max_length=128)
21
  inputs['labels'] = targets['input_ids']
22
  return inputs
23
-
24
- Fine-tune the model using the preprocessed data
25
  def fine_tune_model(train_dataset, val_dataset):
26
  model_name = "distilbert-base-uncased"
27
  tokenizer = AutoTokenizer.from_pretrained(model_name)
@@ -57,7 +55,7 @@ def fine_tune_model(train_dataset, val_dataset):
57
  tokenizer.save_pretrained("./distilbert_finetuned")
58
  print("Model fine-tuned and saved successfully.")
59
 
60
- Create a chatbot inference pipeline using the fine-tuned model
61
  def chatbot_inference():
62
  model_name = "./distilbert_finetuned"
63
  tokenizer = AutoTokenizer.from_pretrained(model_name)
@@ -66,14 +64,14 @@ def chatbot_inference():
66
  chatbot = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
67
  return chatbot
68
 
69
- Run inference to test chatbot functionality
70
  def run_inference():
71
  chatbot = chatbot_inference()
72
  user_input = input("Ask a question: ")
73
  response = chatbot(user_input)
74
  print("Bot Response:", response[0]['generated_text'])
75
 
76
- Main function to train or serve the chatbot
77
  def main():
78
  train_dataset, val_dataset = load_and_preprocess_data()
79
 
 
5
  from transformers import pipeline
6
  from sklearn.model_selection import train_test_split
7
 
 
8
  def load_and_preprocess_data():
9
  dataset = load_dataset('tahiryaqoob/BISELahore')
10
  train_dataset, val_dataset = train_test_split(dataset['train'], test_size=0.2, random_state=42)
 
13
  print(f"Validation samples: {len(val_dataset)}")
14
  return train_dataset, val_dataset
15
 
16
+ #Preprocess the data to format for fine-tunin
17
  def preprocess_function(examples, tokenizer):
18
  inputs = tokenizer(examples['question'], padding="max_length", truncation=True, max_length=128)
19
  targets = tokenizer(examples['answer'], padding="max_length", truncation=True, max_length=128)
20
  inputs['labels'] = targets['input_ids']
21
  return inputs
22
+
 
23
  def fine_tune_model(train_dataset, val_dataset):
24
  model_name = "distilbert-base-uncased"
25
  tokenizer = AutoTokenizer.from_pretrained(model_name)
 
55
  tokenizer.save_pretrained("./distilbert_finetuned")
56
  print("Model fine-tuned and saved successfully.")
57
 
58
+ #Create a chatbot inference pipeline using the fine-tuned model
59
  def chatbot_inference():
60
  model_name = "./distilbert_finetuned"
61
  tokenizer = AutoTokenizer.from_pretrained(model_name)
 
64
  chatbot = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
65
  return chatbot
66
 
67
+ #Run inference to test chatbot functionality
68
  def run_inference():
69
  chatbot = chatbot_inference()
70
  user_input = input("Ask a question: ")
71
  response = chatbot(user_input)
72
  print("Bot Response:", response[0]['generated_text'])
73
 
74
+ #Main function to train or serve the chatbot
75
  def main():
76
  train_dataset, val_dataset = load_and_preprocess_data()
77