BISEBuddy / app.py
tahiryaqoob's picture
Update app.py
d384d9d verified
import os
import requests
from io import BytesIO
from PyPDF2 import PdfReader
from tempfile import NamedTemporaryFile
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from groq import Groq
import gradio as gr
# Initialize Groq client
client = Groq(api_key="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")
# Predefined list of Google Drive links
drive_links = [
"https://drive.google.com/file/d/1x83IIMfuFPFuCzZiRJfT0obBf9PUWHA2/view",
# Add more links here as needed
]
# Function to download PDF from Google Drive
def download_pdf_from_drive(drive_link):
file_id = drive_link.split('/d/')[1].split('/')[0]
download_url = f"https://drive.google.com/uc?id={file_id}&export=download"
response = requests.get(download_url)
if response.status_code == 200:
return BytesIO(response.content)
else:
raise Exception("Failed to download the PDF file from Google Drive.")
# Function to extract text from a PDF
def extract_text_from_pdf(pdf_stream):
pdf_reader = PdfReader(pdf_stream)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return text
# Function to split text into chunks
def chunk_text(text, chunk_size=500, chunk_overlap=50):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size, chunk_overlap=chunk_overlap
)
return text_splitter.split_text(text)
# Function to create embeddings and store them in FAISS
def create_embeddings_and_store(chunks):
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vector_db = FAISS.from_texts(chunks, embedding=embeddings)
return vector_db
# Function to query the vector database and interact with Groq
def query_vector_db(query, vector_db):
# Retrieve relevant documents
docs = vector_db.similarity_search(query, k=3)
context = "\n".join([doc.page_content for doc in docs])
# Interact with Groq API
chat_completion = client.chat.completions.create(
messages=[
{"role": "system", "content": f"Use the following context:\n{context}"},
{"role": "user", "content": query},
],
model="llama3-8b-8192",
)
return chat_completion.choices[0].message.content
# Process the predefined Google Drive links
def process_drive_links():
all_chunks = []
for link in drive_links:
try:
# Download PDF
pdf_stream = download_pdf_from_drive(link)
# Extract text
text = extract_text_from_pdf(pdf_stream)
# Chunk text
chunks = chunk_text(text)
all_chunks.extend(chunks)
except Exception as e:
return f"Error processing link {link}: {e}"
if all_chunks:
# Generate embeddings and store in FAISS
vector_db = create_embeddings_and_store(all_chunks)
return vector_db
return None
# Gradio interface
vector_db = process_drive_links()
def gradio_query_interface(user_query):
if vector_db is None:
return "Error: Could not process Google Drive links."
if not user_query:
return "Please enter a query."
response = query_vector_db(user_query, vector_db)
return response
iface = gr.Interface(
fn=gradio_query_interface,
inputs=gr.Textbox(label="Enter your query:"),
outputs=gr.Textbox(label="Response from LLM:"),
title="BISE Buddy - A RAG-Based Application with Google Drive Support",
description="This application processes predefined Google Drive links, extracts text, and uses embeddings for querying."
)
iface.launch()