Spaces:
Sleeping
Sleeping
import os | |
import requests | |
from io import BytesIO | |
from PyPDF2 import PdfReader | |
from tempfile import NamedTemporaryFile | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.vectorstores import FAISS | |
from groq import Groq | |
import gradio as gr | |
# Initialize Groq client | |
client = Groq(api_key="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") | |
# Predefined list of Google Drive links | |
drive_links = [ | |
"https://drive.google.com/file/d/1x83IIMfuFPFuCzZiRJfT0obBf9PUWHA2/view", | |
# Add more links here as needed | |
] | |
# Function to download PDF from Google Drive | |
def download_pdf_from_drive(drive_link): | |
file_id = drive_link.split('/d/')[1].split('/')[0] | |
download_url = f"https://drive.google.com/uc?id={file_id}&export=download" | |
response = requests.get(download_url) | |
if response.status_code == 200: | |
return BytesIO(response.content) | |
else: | |
raise Exception("Failed to download the PDF file from Google Drive.") | |
# Function to extract text from a PDF | |
def extract_text_from_pdf(pdf_stream): | |
pdf_reader = PdfReader(pdf_stream) | |
text = "" | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
# Function to split text into chunks | |
def chunk_text(text, chunk_size=500, chunk_overlap=50): | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=chunk_size, chunk_overlap=chunk_overlap | |
) | |
return text_splitter.split_text(text) | |
# Function to create embeddings and store them in FAISS | |
def create_embeddings_and_store(chunks): | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") | |
vector_db = FAISS.from_texts(chunks, embedding=embeddings) | |
return vector_db | |
# Function to query the vector database and interact with Groq | |
def query_vector_db(query, vector_db): | |
# Retrieve relevant documents | |
docs = vector_db.similarity_search(query, k=3) | |
context = "\n".join([doc.page_content for doc in docs]) | |
# Interact with Groq API | |
chat_completion = client.chat.completions.create( | |
messages=[ | |
{"role": "system", "content": f"Use the following context:\n{context}"}, | |
{"role": "user", "content": query}, | |
], | |
model="llama3-8b-8192", | |
) | |
return chat_completion.choices[0].message.content | |
# Process the predefined Google Drive links | |
def process_drive_links(): | |
all_chunks = [] | |
for link in drive_links: | |
try: | |
# Download PDF | |
pdf_stream = download_pdf_from_drive(link) | |
# Extract text | |
text = extract_text_from_pdf(pdf_stream) | |
# Chunk text | |
chunks = chunk_text(text) | |
all_chunks.extend(chunks) | |
except Exception as e: | |
return f"Error processing link {link}: {e}" | |
if all_chunks: | |
# Generate embeddings and store in FAISS | |
vector_db = create_embeddings_and_store(all_chunks) | |
return vector_db | |
return None | |
# Gradio interface | |
vector_db = process_drive_links() | |
def gradio_query_interface(user_query): | |
if vector_db is None: | |
return "Error: Could not process Google Drive links." | |
if not user_query: | |
return "Please enter a query." | |
response = query_vector_db(user_query, vector_db) | |
return response | |
iface = gr.Interface( | |
fn=gradio_query_interface, | |
inputs=gr.Textbox(label="Enter your query:"), | |
outputs=gr.Textbox(label="Response from LLM:"), | |
title="BISE Buddy - A RAG-Based Application with Google Drive Support", | |
description="This application processes predefined Google Drive links, extracts text, and uses embeddings for querying." | |
) | |
iface.launch() | |