Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,62 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
|
3 |
+
from datasets import load_dataset
|
4 |
+
|
5 |
+
# Load Dataset
|
6 |
+
dataset_url = "tahiryaqoob/bise-lahore-dataset" # Replace with your dataset repository
|
7 |
+
dataset = load_dataset(dataset_url, split="train")
|
8 |
+
|
9 |
+
# Load Pretrained Model and Tokenizer
|
10 |
+
model_name = "microsoft/DialoGPT-medium"
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
13 |
+
|
14 |
+
# Fine-tuning Function
|
15 |
+
def preprocess_data(example):
|
16 |
+
inputs = tokenizer(example['question'], truncation=True, padding=True, max_length=128)
|
17 |
+
outputs = tokenizer(example['answer'], truncation=True, padding=True, max_length=128)
|
18 |
+
inputs['labels'] = outputs['input_ids']
|
19 |
+
return inputs
|
20 |
+
|
21 |
+
# Tokenize Dataset
|
22 |
+
tokenized_dataset = dataset.map(preprocess_data, batched=True)
|
23 |
+
|
24 |
+
# Fine-Tune the Model
|
25 |
+
training_args = TrainingArguments(
|
26 |
+
output_dir="./results",
|
27 |
+
num_train_epochs=1,
|
28 |
+
per_device_train_batch_size=2,
|
29 |
+
save_steps=500,
|
30 |
+
save_total_limit=2,
|
31 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
trainer = Trainer(
|
34 |
+
model=model,
|
35 |
+
args=training_args,
|
36 |
+
train_dataset=tokenized_dataset,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
)
|
38 |
|
39 |
+
# Train the Model
|
40 |
+
trainer.train()
|
41 |
+
|
42 |
+
# Save the Fine-Tuned Model
|
43 |
+
model.save_pretrained("./bise_chatbot_model")
|
44 |
+
tokenizer.save_pretrained("./bise_chatbot_model")
|
45 |
+
|
46 |
+
# Define Chatbot Function
|
47 |
+
def chatbot_response(user_input):
|
48 |
+
inputs = tokenizer.encode(user_input, return_tensors="pt")
|
49 |
+
outputs = model.generate(inputs, max_length=100, num_return_sequences=1, do_sample=True)
|
50 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
51 |
+
return response
|
52 |
+
|
53 |
+
# Create Gradio Interface
|
54 |
+
iface = gr.Interface(
|
55 |
+
fn=chatbot_response,
|
56 |
+
inputs="text",
|
57 |
+
outputs="text",
|
58 |
+
title="BISE Lahore Chatbot",
|
59 |
+
description="Ask your questions about BISE Lahore services."
|
60 |
+
)
|
61 |
|
62 |
+
iface.launch()
|
|