tahiryaqoob commited on
Commit
10749c4
·
verified ·
1 Parent(s): 36cd355

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -59
app.py CHANGED
@@ -1,64 +1,62 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
-
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
3
+ from datasets import load_dataset
4
+
5
+ # Load Dataset
6
+ dataset_url = "tahiryaqoob/bise-lahore-dataset" # Replace with your dataset repository
7
+ dataset = load_dataset(dataset_url, split="train")
8
+
9
+ # Load Pretrained Model and Tokenizer
10
+ model_name = "microsoft/DialoGPT-medium"
11
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
12
+ model = AutoModelForCausalLM.from_pretrained(model_name)
13
+
14
+ # Fine-tuning Function
15
+ def preprocess_data(example):
16
+ inputs = tokenizer(example['question'], truncation=True, padding=True, max_length=128)
17
+ outputs = tokenizer(example['answer'], truncation=True, padding=True, max_length=128)
18
+ inputs['labels'] = outputs['input_ids']
19
+ return inputs
20
+
21
+ # Tokenize Dataset
22
+ tokenized_dataset = dataset.map(preprocess_data, batched=True)
23
+
24
+ # Fine-Tune the Model
25
+ training_args = TrainingArguments(
26
+ output_dir="./results",
27
+ num_train_epochs=1,
28
+ per_device_train_batch_size=2,
29
+ save_steps=500,
30
+ save_total_limit=2,
31
+ )
 
 
 
 
 
 
 
 
 
 
32
 
33
+ trainer = Trainer(
34
+ model=model,
35
+ args=training_args,
36
+ train_dataset=tokenized_dataset,
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  )
38
 
39
+ # Train the Model
40
+ trainer.train()
41
+
42
+ # Save the Fine-Tuned Model
43
+ model.save_pretrained("./bise_chatbot_model")
44
+ tokenizer.save_pretrained("./bise_chatbot_model")
45
+
46
+ # Define Chatbot Function
47
+ def chatbot_response(user_input):
48
+ inputs = tokenizer.encode(user_input, return_tensors="pt")
49
+ outputs = model.generate(inputs, max_length=100, num_return_sequences=1, do_sample=True)
50
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
51
+ return response
52
+
53
+ # Create Gradio Interface
54
+ iface = gr.Interface(
55
+ fn=chatbot_response,
56
+ inputs="text",
57
+ outputs="text",
58
+ title="BISE Lahore Chatbot",
59
+ description="Ask your questions about BISE Lahore services."
60
+ )
61
 
62
+ iface.launch()