File size: 1,163 Bytes
973cc88
 
 
 
 
4d200f3
973cc88
2376501
4d200f3
 
 
973cc88
c373dd3
 
 
 
2376501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d200f3
 
973cc88
4d200f3
973cc88
2376501
973cc88
4d200f3
f7c8f6a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from transformers import pipeline
import gradio as gr

model_checkpoint = "MuntasirHossain/RoBERTa-base-finetuned-emotion"

model = pipeline("text-classification", model=model_checkpoint)


def classify(text):
    label = model(text)[0]["label"]
    return label

description = "This AI model is trained to classify texts expressing human emotion into different categories."
title = "Xoxo's Texts Expressing Emotion"
examples = [["He is very happy Today",
             "NOTE Free Palestien"]]

theme = {
    "container": {
        "background-color": "#007bff",
        "color": "#fff",
        "padding": "20px",
    },
    "textbox": {
        "background-color": "#fff",
        "border-radius": "5px",
        "padding": "10px",
        "margin-bottom": "10px",
    },
    "button": {
        "background-color": "#007bff",
        "color": "#fff",
        "padding": "10px",
        "border-radius": "5px",
        "cursor": "pointer",
    },
    "label": {
        "color": "#fff",
    },
}

gr.Interface(fn=classify,
    inputs="textbox",
    outputs="text",
    title=title,
    theme=theme,
    description=description,
    examples=examples,
).launch()