|
import streamlit as st |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
|
|
|
|
model_name = "tajuarAkash/test2" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
|
|
|
|
st.title("Fraud Detection in Health Insurance Claims") |
|
|
|
|
|
st.write("This app predicts whether a health insurance claim is fraudulent based on the input data.") |
|
|
|
|
|
input_text = st.text_area("Enter the claim description") |
|
|
|
|
|
if st.button('Predict Fraud'): |
|
if input_text: |
|
|
|
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512) |
|
|
|
|
|
with torch.no_grad(): |
|
logits = model(**inputs).logits |
|
predicted_class = torch.argmax(logits, dim=-1).item() |
|
|
|
|
|
if predicted_class == 1: |
|
st.write("This claim is predicted to be fraudulent.") |
|
else: |
|
st.write("This claim is predicted to be legitimate.") |
|
else: |
|
st.write("Please enter a claim description.") |
|
|