Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,2 +1,38 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load the pre-trained model and tokenizer from Hugging Face
|
6 |
+
model_name = "tajuarAkash/test2" # Replace with your Hugging Face model path
|
7 |
+
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
10 |
+
|
11 |
+
# Title of the web app
|
12 |
+
st.title("Fraud Detection in Health Insurance Claims")
|
13 |
+
|
14 |
+
# Description of the app
|
15 |
+
st.write("This app predicts whether a health insurance claim is fraudulent based on the input data.")
|
16 |
+
|
17 |
+
# Create a text box for the user to input the generated sentence (feature for prediction)
|
18 |
+
input_text = st.text_area("Enter the claim description")
|
19 |
+
|
20 |
+
# Create a button to make predictions
|
21 |
+
if st.button('Predict Fraud'):
|
22 |
+
if input_text:
|
23 |
+
# Tokenize the input text
|
24 |
+
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
25 |
+
|
26 |
+
# Get model predictions
|
27 |
+
with torch.no_grad():
|
28 |
+
logits = model(**inputs).logits
|
29 |
+
predicted_class = torch.argmax(logits, dim=-1).item()
|
30 |
+
|
31 |
+
# Display the result
|
32 |
+
if predicted_class == 1:
|
33 |
+
st.write("This claim is predicted to be fraudulent.")
|
34 |
+
else:
|
35 |
+
st.write("This claim is predicted to be legitimate.")
|
36 |
+
else:
|
37 |
+
st.write("Please enter a claim description.")
|
38 |
+
|