tajuarAkash commited on
Commit
f5fee06
·
verified ·
1 Parent(s): 05d7d77

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -1
app.py CHANGED
@@ -1,2 +1,38 @@
1
  import streamlit as st
2
- print("akash")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
+ import torch
4
+
5
+ # Load the pre-trained model and tokenizer from Hugging Face
6
+ model_name = "tajuarAkash/test2" # Replace with your Hugging Face model path
7
+
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
10
+
11
+ # Title of the web app
12
+ st.title("Fraud Detection in Health Insurance Claims")
13
+
14
+ # Description of the app
15
+ st.write("This app predicts whether a health insurance claim is fraudulent based on the input data.")
16
+
17
+ # Create a text box for the user to input the generated sentence (feature for prediction)
18
+ input_text = st.text_area("Enter the claim description")
19
+
20
+ # Create a button to make predictions
21
+ if st.button('Predict Fraud'):
22
+ if input_text:
23
+ # Tokenize the input text
24
+ inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512)
25
+
26
+ # Get model predictions
27
+ with torch.no_grad():
28
+ logits = model(**inputs).logits
29
+ predicted_class = torch.argmax(logits, dim=-1).item()
30
+
31
+ # Display the result
32
+ if predicted_class == 1:
33
+ st.write("This claim is predicted to be fraudulent.")
34
+ else:
35
+ st.write("This claim is predicted to be legitimate.")
36
+ else:
37
+ st.write("Please enter a claim description.")
38
+