import streamlit as st from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # Load the pre-trained model and tokenizer from Hugging Face model_name = "tajuarAkash/test2" # Replace with your Hugging Face model path tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # Title of the web app st.title("Fraud Detection in Health Insurance Claims") # Description of the app st.write("This app predicts whether a health insurance claim is fraudulent based on the input data.") # Create a text box for the user to input the generated sentence (feature for prediction) input_text = st.text_area("Enter the claim description") # Create a button to make predictions if st.button('Predict Fraud'): if input_text: # Tokenize the input text inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512) # Get model predictions with torch.no_grad(): logits = model(**inputs).logits predicted_class = torch.argmax(logits, dim=-1).item() # Display the result if predicted_class == 1: st.write("This claim is predicted to be fraudulent.") else: st.write("This claim is predicted to be legitimate.") else: st.write("Please enter a claim description.")