Spaces:
Runtime error
Runtime error
from diffusers import StableDiffusionPipeline | |
from compel import Compel | |
import gradio | |
import torch | |
model_id = "dream-textures/texture-diffusion" | |
device = "cuda" | |
dtype = torch.float16 | |
if torch.cuda.is_available(): | |
pipe = StableDiffusionPipeline.from_pretrained( | |
model_id, torch_dtype=dtype | |
).to(device) | |
else: | |
pipe = StableDiffusionPipeline.from_pretrained(model_id) | |
compel_proc = Compel( | |
tokenizer=pipe.tokenizer, | |
text_encoder=pipe.text_encoder, | |
truncate_long_prompts=False, | |
) | |
def predict( | |
prompt: str, | |
generator: int, | |
num_inference_steps: int, | |
strength: float, | |
guidance_scale: float, | |
): | |
generator = torch.manual_seed(generator) | |
prompt_embeds = compel_proc(prompt) | |
results = pipe( | |
prompt_embeds=prompt_embeds, | |
generator=generator, | |
guidance_scale=float(guidance_scale), | |
num_inference_steps=num_inference_steps, | |
output_type="pil", | |
strength=float(strength), | |
) | |
if len(results.images) > 0: | |
return results.images[0] | |
return None | |
app = gradio.Interface( | |
fn=predict, | |
inputs=[ | |
gradio.Textbox("pbr brick wall"), # prompt | |
gradio.Slider(0, 2147483647, 2159232, step=1), # generator | |
gradio.Slider(2, 15, 4, step=1), # num_inference_steps | |
gradio.Slider(0.0, 1.0, 0.5, step=0.01), # strength | |
gradio.Slider(0.0, 5.0, 0.2, step=0.01), # guidance_scale | |
], | |
outputs=gradio.Image(type="pil") | |
) | |
app.launch() | |