Spaces:
Runtime error
Runtime error
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel | |
from diffusers import UniPCMultistepScheduler | |
import gradio as gr | |
import torch | |
# Constants | |
low_threshold = 100 | |
high_threshold = 200 | |
# Models | |
controlnet_pose = ControlNetModel.from_pretrained( | |
"lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16 | |
) | |
controlnet_canny = ControlNetModel.from_pretrained( | |
"lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16 | |
) | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", | |
controlnet=[controlnet_pose,controlnet_canny], | |
safety_checker=None, torch_dtype=torch.float16 | |
) | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
# This command loads the individual model components on GPU on-demand. So, we don't | |
# need to explicitly call pipe.to("cuda"). | |
pipe.enable_model_cpu_offload() | |
# xformers | |
pipe.enable_xformers_memory_efficient_attention() | |
# Generator seed, | |
generator = torch.manual_seed(0) | |
def generate_images(pose_image, canny_image, prompt): | |
output = pipe( | |
prompt, | |
[pose_image, canny_image], | |
generator=generator, | |
num_images_per_prompt=3, | |
num_inference_steps=20, | |
) | |
all_outputs = [] | |
all_outputs.append(pose_image) | |
all_outputs.append(canny_image) | |
for image in output.images: | |
all_outputs.append(image) | |
return all_outputs | |
gr.Interface( | |
generate_images, | |
inputs=[ | |
gr.Image(type="pil"), | |
gr.Image(type="pil"), | |
gr.Textbox( | |
label="Enter your prompt", | |
max_lines=1, | |
placeholder="best quality, extremely detailed, a girl wearing white dress", | |
), | |
], | |
outputs=gr.Gallery().style(grid=[2], height="auto"), | |
title="Generate controlled outputs with Mult-ControlNet and Stable Diffusion using π€Diffusers", | |
description="This Space uses pose lines and canny edged image as the additional conditioning. Please refer to the \"Examples\" for what kind of images are appropriate.", | |
examples=[["sample_pose_body.png", "sample_canny_hand.png", "best quality, extremely detailed"]], | |
allow_flagging=False, | |
).launch(enable_queue=True) |