SeeknnDestroy
download models from hub
cf9e3cb unverified
raw
history blame
13.8 kB
import gradio as gr
import pickle
import fasttext
import numpy as np
import os
import torch
import time
from transformers import AutoTokenizer, AutoModel
import torch.nn.functional as F
from openai import AzureOpenAI
from huggingface_hub import hf_hub_download
# Download the FastText model from Hugging Face
model_path_fasttext_raw = hf_hub_download(repo_id="talhasarit41/fasttext", filename="fasttext_raw.bin")
model_path_fasttext_preprocessed = hf_hub_download(repo_id="talhasarit41/fasttext", filename="fasttext_preprocessed.bin")
# Azure OpenAI Configuration
AZURE_API_VERSION = "2024-02-01"
# Model directory
MODEL_DIR = "models"
# Initialize Azure OpenAI client
azure_client = AzureOpenAI(
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version=AZURE_API_VERSION,
azure_endpoint=os.getenv("AZURE_OPENAI_EMBEDDING_ENDPOINT")
)
def generate_e5_embedding(text, model_name='intfloat/multilingual-e5-large'):
"""Generate E5 embeddings for a single text."""
start_time = time.time()
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
# Add prefix for E5 models
text = f"query: {text}"
# Tokenize and generate embedding
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# Mean pooling
attention_mask = inputs['attention_mask']
embeddings = mean_pooling(outputs.last_hidden_state, attention_mask)
# Normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
inference_time = time.time() - start_time
return embeddings[0].numpy(), inference_time
def generate_e5_instruct_embedding(text, model_name='intfloat/multilingual-e5-large-instruct'):
"""Generate E5-instruct embeddings for a single text."""
start_time = time.time()
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
# Add prefix for E5 models
text = f"query: {text}"
# Tokenize and generate embedding
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# Mean pooling
attention_mask = inputs['attention_mask']
embeddings = mean_pooling(outputs.last_hidden_state, attention_mask)
# Normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
inference_time = time.time() - start_time
return embeddings[0].numpy(), inference_time
def generate_modernbert_embedding(text, model_name="answerdotai/ModernBERT-base"):
"""Generate ModernBERT embeddings for a single text."""
start_time = time.time()
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
# Tokenize and generate embedding
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# Take [CLS] token embedding
embeddings = outputs.last_hidden_state[:, 0, :]
inference_time = time.time() - start_time
return embeddings[0].numpy(), inference_time
def mean_pooling(token_embeddings, attention_mask):
"""Mean pooling function for E5 models."""
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def get_azure_embedding(text):
"""Get embeddings from Azure OpenAI API."""
start_time = time.time()
response = azure_client.embeddings.create(
model="text-embedding-3-large",
input=text
)
inference_time = time.time() - start_time
return np.array(response.data[0].embedding), inference_time
# Load models
def load_models():
models = {}
# Load pickle models
with open(os.path.join(MODEL_DIR, 'e5_classifier.pkl'), 'rb') as f:
models['E5 Classifier'] = pickle.load(f)
with open(os.path.join(MODEL_DIR, 'e5_large_instruct_classifier.pkl'), 'rb') as f:
models['E5-Instruct Classifier'] = pickle.load(f)
with open(os.path.join(MODEL_DIR, 'azure_classifier.pkl'), 'rb') as f:
models['Azure Classifier'] = pickle.load(f)
with open(os.path.join(MODEL_DIR, 'azure_knn_classifier.pkl'), 'rb') as f:
models['Azure KNN Classifier'] = pickle.load(f)
with open(os.path.join(MODEL_DIR, 'modernbert_rf_classifier.pkl'), 'rb') as f:
models['ModernBERT RF Classifier'] = pickle.load(f)
with open(os.path.join(MODEL_DIR, 'gte_classifier.pkl'), 'rb') as f:
models['GTE Classifier'] = pickle.load(f)
# Load FastText models
models['FastText Raw'] = fasttext.load_model(model_path_fasttext_raw)
models['FastText Preprocessed'] = fasttext.load_model(model_path_fasttext_preprocessed)
return models
def format_results(results):
"""Format results into HTML for better visualization."""
html = "<div style='font-family: monospace; padding: 10px 20px;'>"
html += "<table style='width: 100%; border-collapse: collapse; background-color: #1a1a1a; color: #ffffff; margin-bottom: 0;'>"
html += "<tr style='background-color: #2c3e50;'>"
html += "<th style='padding: 12px; text-align: left; border: 1px solid #34495e;'>Model</th>"
html += "<th style='padding: 12px; text-align: left; border: 1px solid #34495e;'>Prediction</th>"
html += "<th style='padding: 12px; text-align: left; border: 1px solid #34495e;'>Confidence</th>"
html += "<th style='padding: 12px; text-align: left; border: 1px solid #34495e;'>Time (sec)</th>"
html += "</tr>"
for result in results:
color = get_confidence_color(result['confidence'])
html += f"<tr style='background-color: #2d2d2d; border-bottom: 1px solid #404040;'>"
html += f"<td style='padding: 12px; border: 1px solid #404040;'>{result['model']}</td>"
html += f"<td style='padding: 12px; border: 1px solid #404040;'>{result['prediction']}</td>"
html += f"<td style='padding: 12px; border: 1px solid #404040;'><span style='color: {color}; font-weight: bold;'>{result['confidence']:.4f}</span></td>"
html += f"<td style='padding: 12px; border: 1px solid #404040;'>{result['time']:.4f}</td>"
html += "</tr>"
html += "</table></div>"
return html
def format_progress(progress_value, desc):
"""Format progress bar HTML."""
if progress_value >= 100:
return "" # Return empty string when complete
html = f"""
<div style='width: 100%; background-color: #1a1a1a; padding: 10px; border-radius: 5px; margin-bottom: 10px;'>
<div style='color: white; margin-bottom: 5px;'>{desc}</div>
<div style='background-color: #2d2d2d; border-radius: 3px;'>
<div style='background-color: #6b46c1; width: {progress_value}%; height: 20px; border-radius: 3px; transition: width 0.3s ease;'></div>
</div>
<div style='color: white; text-align: right; margin-top: 5px;'>{progress_value:.1f}%</div>
</div>
"""
return html
def get_confidence_color(confidence):
"""Return color based on confidence score."""
if confidence >= 0.8:
return "#00ff00" # Bright green for high confidence
elif confidence >= 0.5:
return "#ffa500" # Bright orange for medium confidence
else:
return "#ff4444" # Bright red for low confidence
# [Add GTE embedding generation function]
def generate_gte_embedding(text, model_name='Alibaba-NLP/gte-multilingual-base'):
"""Generate GTE embeddings for a single text."""
start_time = time.time()
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
# Tokenize and generate embedding
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
embeddings = outputs.last_hidden_state[:, 0, :] # [CLS] token
embeddings = F.normalize(embeddings, p=2, dim=1) # normalize
inference_time = time.time() - start_time
return embeddings[0].numpy(), inference_time
# Make predictions (streaming version)
def predict_text_streaming(text):
try:
models = load_models()
results = []
# First yield empty table and progress bar
yield format_progress(0, "Loading models..."), format_results(results)
# Process FastText models first (they're fastest as they don't need embeddings)
for model_name, model in models.items():
if isinstance(model, fasttext.FastText._FastText):
yield format_progress(10, f"Processing {model_name}..."), format_results(results)
start_time = time.time()
prediction = model.predict(text)
label = prediction[0][0].replace('__label__', '')
confidence = float(prediction[1][0])
inference_time = time.time() - start_time
results.append({
'model': model_name,
'prediction': label,
'confidence': confidence,
'time': inference_time
})
yield format_progress(20, f"Completed {model_name}"), format_results(results)
# Process E5 models
yield format_progress(30, "Processing E5 Classifier..."), format_results(results)
e5_embedding, embed_time = generate_e5_embedding(text)
for model_name in ['E5 Classifier', 'E5-Instruct Classifier']:
start_time = time.time()
model = models[model_name]
embedding_2d = e5_embedding.reshape(1, -1)
prediction = model.predict(embedding_2d)[0]
probabilities = model.predict_proba(embedding_2d)[0]
confidence = max(probabilities)
inference_time = time.time() - start_time
results.append({
'model': model_name,
'prediction': prediction,
'confidence': confidence,
'time': inference_time + embed_time
})
yield format_progress(40, f"Completed {model_name}"), format_results(results)
# Process Azure models
yield format_progress(50, "Processing Azure Embeddings..."), format_results(results)
azure_embedding, embed_time = get_azure_embedding(text)
for model_name in ['Azure Classifier', 'Azure KNN Classifier']:
start_time = time.time()
model = models[model_name]
embedding_2d = azure_embedding.reshape(1, -1)
prediction = model.predict(embedding_2d)[0]
probabilities = model.predict_proba(embedding_2d)[0]
confidence = max(probabilities)
inference_time = time.time() - start_time
results.append({
'model': model_name,
'prediction': prediction,
'confidence': confidence,
'time': inference_time + embed_time
})
yield format_progress(70, f"Completed {model_name}"), format_results(results)
# Process ModernBERT model
yield format_progress(80, "Processing ModernBERT RF Classifier..."), format_results(results)
modernbert_embedding, embed_time = generate_modernbert_embedding(text)
model = models['ModernBERT RF Classifier']
embedding_2d = modernbert_embedding.reshape(1, -1)
prediction = model.predict(embedding_2d)[0]
probabilities = model.predict_proba(embedding_2d)[0]
confidence = max(probabilities)
inference_time = time.time() - start_time
results.append({
'model': 'ModernBERT RF Classifier',
'prediction': prediction,
'confidence': confidence,
'time': inference_time + embed_time
})
yield format_progress(90, "Completed ModernBERT RF Classifier"), format_results(results)
# Process GTE model
yield format_progress(95, "Processing GTE Classifier..."), format_results(results)
gte_embedding, embed_time = generate_gte_embedding(text)
model = models['GTE Classifier']
embedding_2d = gte_embedding.reshape(1, -1)
prediction = model.predict(embedding_2d)[0]
probabilities = model.predict_proba(embedding_2d)[0]
confidence = max(probabilities)
inference_time = time.time() - start_time
results.append({
'model': 'GTE Classifier',
'prediction': prediction,
'confidence': confidence,
'time': inference_time + embed_time
})
yield format_progress(100, "Completed!"), format_results(results)
except Exception as e:
yield "", f"<div style='color: red; padding: 20px;'>Error occurred: {str(e)}</div>"
# Create Gradio interface with custom CSS
css = """
.main {
gap: 0 !important;
}
.contain {
gap: 0 !important;
}
.feedback {
margin-top: 0 !important;
margin-bottom: 0 !important;
}
"""
iface = gr.Interface(
fn=predict_text_streaming,
inputs=gr.Textbox(label="Enter text to classify", lines=3),
outputs=[
gr.HTML(label="Progress"),
gr.HTML(label="Model Predictions")
],
title="Text Classification Model Comparison",
description="Compare predictions from different text classification models (Results stream as they become available)",
theme=gr.themes.Soft(),
css=css
)
if __name__ == "__main__":
iface.launch(debug=True)