SeeknnDestroy
commited on
revert
Browse files- app.py +4 -4
- requirements.txt +1 -1
app.py
CHANGED
@@ -231,7 +231,7 @@ def predict_text_streaming(text):
|
|
231 |
for model_name in ['E5 Classifier', 'E5-Instruct Classifier']:
|
232 |
start_time = time.time()
|
233 |
model = models[model_name]
|
234 |
-
embedding_2d =
|
235 |
prediction = model.predict(embedding_2d)[0]
|
236 |
probabilities = model.predict_proba(embedding_2d)[0]
|
237 |
confidence = max(probabilities)
|
@@ -251,7 +251,7 @@ def predict_text_streaming(text):
|
|
251 |
for model_name in ['Azure Classifier', 'Azure KNN Classifier']:
|
252 |
start_time = time.time()
|
253 |
model = models[model_name]
|
254 |
-
embedding_2d =
|
255 |
prediction = model.predict(embedding_2d)[0]
|
256 |
probabilities = model.predict_proba(embedding_2d)[0]
|
257 |
confidence = max(probabilities)
|
@@ -269,7 +269,7 @@ def predict_text_streaming(text):
|
|
269 |
yield format_progress(80, "Processing ModernBERT RF Classifier..."), format_results(results)
|
270 |
modernbert_embedding, embed_time = generate_modernbert_embedding(text)
|
271 |
model = models['ModernBERT RF Classifier']
|
272 |
-
embedding_2d =
|
273 |
prediction = model.predict(embedding_2d)[0]
|
274 |
probabilities = model.predict_proba(embedding_2d)[0]
|
275 |
confidence = max(probabilities)
|
@@ -287,7 +287,7 @@ def predict_text_streaming(text):
|
|
287 |
yield format_progress(95, "Processing GTE Classifier..."), format_results(results)
|
288 |
gte_embedding, embed_time = generate_gte_embedding(text)
|
289 |
model = models['GTE Classifier']
|
290 |
-
embedding_2d =
|
291 |
prediction = model.predict(embedding_2d)[0]
|
292 |
probabilities = model.predict_proba(embedding_2d)[0]
|
293 |
confidence = max(probabilities)
|
|
|
231 |
for model_name in ['E5 Classifier', 'E5-Instruct Classifier']:
|
232 |
start_time = time.time()
|
233 |
model = models[model_name]
|
234 |
+
embedding_2d = e5_embedding.reshape(1, -1)
|
235 |
prediction = model.predict(embedding_2d)[0]
|
236 |
probabilities = model.predict_proba(embedding_2d)[0]
|
237 |
confidence = max(probabilities)
|
|
|
251 |
for model_name in ['Azure Classifier', 'Azure KNN Classifier']:
|
252 |
start_time = time.time()
|
253 |
model = models[model_name]
|
254 |
+
embedding_2d = azure_embedding.reshape(1, -1)
|
255 |
prediction = model.predict(embedding_2d)[0]
|
256 |
probabilities = model.predict_proba(embedding_2d)[0]
|
257 |
confidence = max(probabilities)
|
|
|
269 |
yield format_progress(80, "Processing ModernBERT RF Classifier..."), format_results(results)
|
270 |
modernbert_embedding, embed_time = generate_modernbert_embedding(text)
|
271 |
model = models['ModernBERT RF Classifier']
|
272 |
+
embedding_2d = modernbert_embedding.reshape(1, -1)
|
273 |
prediction = model.predict(embedding_2d)[0]
|
274 |
probabilities = model.predict_proba(embedding_2d)[0]
|
275 |
confidence = max(probabilities)
|
|
|
287 |
yield format_progress(95, "Processing GTE Classifier..."), format_results(results)
|
288 |
gte_embedding, embed_time = generate_gte_embedding(text)
|
289 |
model = models['GTE Classifier']
|
290 |
+
embedding_2d = gte_embedding.reshape(1, -1)
|
291 |
prediction = model.predict(embedding_2d)[0]
|
292 |
probabilities = model.predict_proba(embedding_2d)[0]
|
293 |
confidence = max(probabilities)
|
requirements.txt
CHANGED
@@ -2,6 +2,6 @@ gradio>=4.0.0
|
|
2 |
fasttext>=0.9.2
|
3 |
numpy==1.26.4
|
4 |
torch>=2.0.0
|
5 |
-
transformers
|
6 |
openai>=1.0.0
|
7 |
scikit-learn
|
|
|
2 |
fasttext>=0.9.2
|
3 |
numpy==1.26.4
|
4 |
torch>=2.0.0
|
5 |
+
transformers==4.48.0.dev0
|
6 |
openai>=1.0.0
|
7 |
scikit-learn
|