Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pickle
|
3 |
+
import fasttext
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
+
import torch
|
7 |
+
import time
|
8 |
+
from transformers import AutoTokenizer, AutoModel
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from openai import AzureOpenAI
|
11 |
+
|
12 |
+
# Azure OpenAI Configuration
|
13 |
+
AZURE_OPENAI_EMBEDDING_ENDPOINT = ...
|
14 |
+
AZURE_API_VERSION = "2024-02-01"
|
15 |
+
AZURE_OPENAI_API_KEY = ...
|
16 |
+
|
17 |
+
# Model directory
|
18 |
+
MODEL_DIR = "saved_models_synthetic"
|
19 |
+
|
20 |
+
# Initialize Azure OpenAI client
|
21 |
+
azure_client = AzureOpenAI(
|
22 |
+
api_key=AZURE_OPENAI_API_KEY,
|
23 |
+
api_version=AZURE_API_VERSION,
|
24 |
+
azure_endpoint=AZURE_OPENAI_EMBEDDING_ENDPOINT
|
25 |
+
)
|
26 |
+
|
27 |
+
def generate_e5_embedding(text, model_name='intfloat/multilingual-e5-large'):
|
28 |
+
"""Generate E5 embeddings for a single text."""
|
29 |
+
start_time = time.time()
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
31 |
+
model = AutoModel.from_pretrained(model_name)
|
32 |
+
|
33 |
+
# Add prefix for E5 models
|
34 |
+
text = f"query: {text}"
|
35 |
+
|
36 |
+
# Tokenize and generate embedding
|
37 |
+
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
|
38 |
+
with torch.no_grad():
|
39 |
+
outputs = model(**inputs)
|
40 |
+
|
41 |
+
# Mean pooling
|
42 |
+
attention_mask = inputs['attention_mask']
|
43 |
+
embeddings = mean_pooling(outputs.last_hidden_state, attention_mask)
|
44 |
+
# Normalize embeddings
|
45 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
46 |
+
|
47 |
+
inference_time = time.time() - start_time
|
48 |
+
return embeddings[0].numpy(), inference_time
|
49 |
+
|
50 |
+
def generate_e5_instruct_embedding(text, model_name='intfloat/multilingual-e5-large-instruct'):
|
51 |
+
"""Generate E5-instruct embeddings for a single text."""
|
52 |
+
start_time = time.time()
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
54 |
+
model = AutoModel.from_pretrained(model_name)
|
55 |
+
|
56 |
+
# Add prefix for E5 models
|
57 |
+
text = f"query: {text}"
|
58 |
+
|
59 |
+
# Tokenize and generate embedding
|
60 |
+
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
|
61 |
+
with torch.no_grad():
|
62 |
+
outputs = model(**inputs)
|
63 |
+
|
64 |
+
# Mean pooling
|
65 |
+
attention_mask = inputs['attention_mask']
|
66 |
+
embeddings = mean_pooling(outputs.last_hidden_state, attention_mask)
|
67 |
+
# Normalize embeddings
|
68 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
69 |
+
|
70 |
+
inference_time = time.time() - start_time
|
71 |
+
return embeddings[0].numpy(), inference_time
|
72 |
+
|
73 |
+
def generate_modernbert_embedding(text, model_name="answerdotai/ModernBERT-base"):
|
74 |
+
"""Generate ModernBERT embeddings for a single text."""
|
75 |
+
start_time = time.time()
|
76 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
77 |
+
model = AutoModel.from_pretrained(model_name)
|
78 |
+
|
79 |
+
# Tokenize and generate embedding
|
80 |
+
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
|
81 |
+
with torch.no_grad():
|
82 |
+
outputs = model(**inputs)
|
83 |
+
# Take [CLS] token embedding
|
84 |
+
embeddings = outputs.last_hidden_state[:, 0, :]
|
85 |
+
|
86 |
+
inference_time = time.time() - start_time
|
87 |
+
return embeddings[0].numpy(), inference_time
|
88 |
+
|
89 |
+
def mean_pooling(token_embeddings, attention_mask):
|
90 |
+
"""Mean pooling function for E5 models."""
|
91 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
92 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
93 |
+
|
94 |
+
def get_azure_embedding(text):
|
95 |
+
"""Get embeddings from Azure OpenAI API."""
|
96 |
+
start_time = time.time()
|
97 |
+
response = azure_client.embeddings.create(
|
98 |
+
model="text-embedding-3-large",
|
99 |
+
input=text
|
100 |
+
)
|
101 |
+
inference_time = time.time() - start_time
|
102 |
+
return np.array(response.data[0].embedding), inference_time
|
103 |
+
|
104 |
+
# Load models
|
105 |
+
def load_models():
|
106 |
+
models = {}
|
107 |
+
|
108 |
+
# Load pickle models
|
109 |
+
with open(os.path.join(MODEL_DIR, 'e5_classifier.pkl'), 'rb') as f:
|
110 |
+
models['E5 Classifier'] = pickle.load(f)
|
111 |
+
|
112 |
+
with open(os.path.join(MODEL_DIR, 'e5_large_instruct_classifier.pkl'), 'rb') as f:
|
113 |
+
models['E5-Instruct Classifier'] = pickle.load(f)
|
114 |
+
|
115 |
+
with open(os.path.join(MODEL_DIR, 'azure_classifier.pkl'), 'rb') as f:
|
116 |
+
models['Azure Classifier'] = pickle.load(f)
|
117 |
+
|
118 |
+
with open(os.path.join(MODEL_DIR, 'azure_knn_classifier.pkl'), 'rb') as f:
|
119 |
+
models['Azure KNN Classifier'] = pickle.load(f)
|
120 |
+
|
121 |
+
with open(os.path.join(MODEL_DIR, 'modernbert_rf_classifier.pkl'), 'rb') as f:
|
122 |
+
models['ModernBERT RF Classifier'] = pickle.load(f)
|
123 |
+
|
124 |
+
with open(os.path.join(MODEL_DIR, 'gte_classifier.pkl'), 'rb') as f:
|
125 |
+
models['GTE Classifier'] = pickle.load(f)
|
126 |
+
|
127 |
+
# Load FastText models
|
128 |
+
models['FastText Raw'] = fasttext.load_model(os.path.join(MODEL_DIR, 'fasttext_raw.bin'))
|
129 |
+
models['FastText Preprocessed'] = fasttext.load_model(os.path.join(MODEL_DIR, 'fasttext_preprocessed.bin'))
|
130 |
+
|
131 |
+
return models
|
132 |
+
|
133 |
+
def format_results(results):
|
134 |
+
"""Format results into HTML for better visualization."""
|
135 |
+
html = "<div style='font-family: monospace; padding: 10px 20px;'>"
|
136 |
+
html += "<table style='width: 100%; border-collapse: collapse; background-color: #1a1a1a; color: #ffffff; margin-bottom: 0;'>"
|
137 |
+
html += "<tr style='background-color: #2c3e50;'>"
|
138 |
+
html += "<th style='padding: 12px; text-align: left; border: 1px solid #34495e;'>Model</th>"
|
139 |
+
html += "<th style='padding: 12px; text-align: left; border: 1px solid #34495e;'>Prediction</th>"
|
140 |
+
html += "<th style='padding: 12px; text-align: left; border: 1px solid #34495e;'>Confidence</th>"
|
141 |
+
html += "<th style='padding: 12px; text-align: left; border: 1px solid #34495e;'>Time (sec)</th>"
|
142 |
+
html += "</tr>"
|
143 |
+
|
144 |
+
for result in results:
|
145 |
+
color = get_confidence_color(result['confidence'])
|
146 |
+
html += f"<tr style='background-color: #2d2d2d; border-bottom: 1px solid #404040;'>"
|
147 |
+
html += f"<td style='padding: 12px; border: 1px solid #404040;'>{result['model']}</td>"
|
148 |
+
html += f"<td style='padding: 12px; border: 1px solid #404040;'>{result['prediction']}</td>"
|
149 |
+
html += f"<td style='padding: 12px; border: 1px solid #404040;'><span style='color: {color}; font-weight: bold;'>{result['confidence']:.4f}</span></td>"
|
150 |
+
html += f"<td style='padding: 12px; border: 1px solid #404040;'>{result['time']:.4f}</td>"
|
151 |
+
html += "</tr>"
|
152 |
+
|
153 |
+
html += "</table></div>"
|
154 |
+
return html
|
155 |
+
|
156 |
+
def format_progress(progress_value, desc):
|
157 |
+
"""Format progress bar HTML."""
|
158 |
+
if progress_value >= 100:
|
159 |
+
return "" # Return empty string when complete
|
160 |
+
|
161 |
+
html = f"""
|
162 |
+
<div style='width: 100%; background-color: #1a1a1a; padding: 10px; border-radius: 5px; margin-bottom: 10px;'>
|
163 |
+
<div style='color: white; margin-bottom: 5px;'>{desc}</div>
|
164 |
+
<div style='background-color: #2d2d2d; border-radius: 3px;'>
|
165 |
+
<div style='background-color: #6b46c1; width: {progress_value}%; height: 20px; border-radius: 3px; transition: width 0.3s ease;'></div>
|
166 |
+
</div>
|
167 |
+
<div style='color: white; text-align: right; margin-top: 5px;'>{progress_value:.1f}%</div>
|
168 |
+
</div>
|
169 |
+
"""
|
170 |
+
return html
|
171 |
+
|
172 |
+
def get_confidence_color(confidence):
|
173 |
+
"""Return color based on confidence score."""
|
174 |
+
if confidence >= 0.8:
|
175 |
+
return "#00ff00" # Bright green for high confidence
|
176 |
+
elif confidence >= 0.5:
|
177 |
+
return "#ffa500" # Bright orange for medium confidence
|
178 |
+
else:
|
179 |
+
return "#ff4444" # Bright red for low confidence
|
180 |
+
|
181 |
+
# [Add GTE embedding generation function]
|
182 |
+
def generate_gte_embedding(text, model_name='Alibaba-NLP/gte-base'):
|
183 |
+
"""Generate GTE embeddings for a single text."""
|
184 |
+
start_time = time.time()
|
185 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
186 |
+
model = AutoModel.from_pretrained(model_name)
|
187 |
+
|
188 |
+
# Tokenize and generate embedding
|
189 |
+
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
|
190 |
+
with torch.no_grad():
|
191 |
+
outputs = model(**inputs)
|
192 |
+
embeddings = outputs.last_hidden_state[:, 0, :] # [CLS] token
|
193 |
+
embeddings = F.normalize(embeddings, p=2, dim=1) # normalize
|
194 |
+
|
195 |
+
inference_time = time.time() - start_time
|
196 |
+
return embeddings[0].numpy(), inference_time
|
197 |
+
|
198 |
+
# Make predictions (streaming version)
|
199 |
+
def predict_text_streaming(text):
|
200 |
+
try:
|
201 |
+
models = load_models()
|
202 |
+
results = []
|
203 |
+
|
204 |
+
# First yield empty table and progress bar
|
205 |
+
yield format_progress(0, "Loading models..."), format_results(results)
|
206 |
+
|
207 |
+
# Process FastText models first (they're fastest as they don't need embeddings)
|
208 |
+
for model_name, model in models.items():
|
209 |
+
if isinstance(model, fasttext.FastText._FastText):
|
210 |
+
yield format_progress(10, f"Processing {model_name}..."), format_results(results)
|
211 |
+
start_time = time.time()
|
212 |
+
prediction = model.predict(text)
|
213 |
+
label = prediction[0][0].replace('__label__', '')
|
214 |
+
confidence = float(prediction[1][0])
|
215 |
+
inference_time = time.time() - start_time
|
216 |
+
|
217 |
+
results.append({
|
218 |
+
'model': model_name,
|
219 |
+
'prediction': label,
|
220 |
+
'confidence': confidence,
|
221 |
+
'time': inference_time
|
222 |
+
})
|
223 |
+
yield format_progress(20, f"Completed {model_name}"), format_results(results)
|
224 |
+
|
225 |
+
# Process E5 models
|
226 |
+
yield format_progress(30, "Processing E5 Classifier..."), format_results(results)
|
227 |
+
e5_embedding, embed_time = generate_e5_embedding(text)
|
228 |
+
for model_name in ['E5 Classifier', 'E5-Instruct Classifier']:
|
229 |
+
start_time = time.time()
|
230 |
+
model = models[model_name]
|
231 |
+
embedding_2d = e5_embedding.reshape(1, -1)
|
232 |
+
prediction = model.predict(embedding_2d)[0]
|
233 |
+
probabilities = model.predict_proba(embedding_2d)[0]
|
234 |
+
confidence = max(probabilities)
|
235 |
+
inference_time = time.time() - start_time
|
236 |
+
|
237 |
+
results.append({
|
238 |
+
'model': model_name,
|
239 |
+
'prediction': prediction,
|
240 |
+
'confidence': confidence,
|
241 |
+
'time': inference_time + embed_time
|
242 |
+
})
|
243 |
+
yield format_progress(40, f"Completed {model_name}"), format_results(results)
|
244 |
+
|
245 |
+
# Process Azure models
|
246 |
+
yield format_progress(50, "Processing Azure Embeddings..."), format_results(results)
|
247 |
+
azure_embedding, embed_time = get_azure_embedding(text)
|
248 |
+
for model_name in ['Azure Classifier', 'Azure KNN Classifier']:
|
249 |
+
start_time = time.time()
|
250 |
+
model = models[model_name]
|
251 |
+
embedding_2d = azure_embedding.reshape(1, -1)
|
252 |
+
prediction = model.predict(embedding_2d)[0]
|
253 |
+
probabilities = model.predict_proba(embedding_2d)[0]
|
254 |
+
confidence = max(probabilities)
|
255 |
+
inference_time = time.time() - start_time
|
256 |
+
|
257 |
+
results.append({
|
258 |
+
'model': model_name,
|
259 |
+
'prediction': prediction,
|
260 |
+
'confidence': confidence,
|
261 |
+
'time': inference_time + embed_time
|
262 |
+
})
|
263 |
+
yield format_progress(70, f"Completed {model_name}"), format_results(results)
|
264 |
+
|
265 |
+
# Process ModernBERT model
|
266 |
+
yield format_progress(80, "Processing ModernBERT RF Classifier..."), format_results(results)
|
267 |
+
modernbert_embedding, embed_time = generate_modernbert_embedding(text)
|
268 |
+
model = models['ModernBERT RF Classifier']
|
269 |
+
embedding_2d = modernbert_embedding.reshape(1, -1)
|
270 |
+
prediction = model.predict(embedding_2d)[0]
|
271 |
+
probabilities = model.predict_proba(embedding_2d)[0]
|
272 |
+
confidence = max(probabilities)
|
273 |
+
inference_time = time.time() - start_time
|
274 |
+
|
275 |
+
results.append({
|
276 |
+
'model': 'ModernBERT RF Classifier',
|
277 |
+
'prediction': prediction,
|
278 |
+
'confidence': confidence,
|
279 |
+
'time': inference_time + embed_time
|
280 |
+
})
|
281 |
+
yield format_progress(90, "Completed ModernBERT RF Classifier"), format_results(results)
|
282 |
+
|
283 |
+
# Process GTE model
|
284 |
+
yield format_progress(95, "Processing GTE Classifier..."), format_results(results)
|
285 |
+
gte_embedding, embed_time = generate_gte_embedding(text)
|
286 |
+
model = models['GTE Classifier']
|
287 |
+
embedding_2d = gte_embedding.reshape(1, -1)
|
288 |
+
prediction = model.predict(embedding_2d)[0]
|
289 |
+
probabilities = model.predict_proba(embedding_2d)[0]
|
290 |
+
confidence = max(probabilities)
|
291 |
+
inference_time = time.time() - start_time
|
292 |
+
|
293 |
+
results.append({
|
294 |
+
'model': 'GTE Classifier',
|
295 |
+
'prediction': prediction,
|
296 |
+
'confidence': confidence,
|
297 |
+
'time': inference_time + embed_time
|
298 |
+
})
|
299 |
+
yield format_progress(100, "Completed!"), format_results(results)
|
300 |
+
|
301 |
+
except Exception as e:
|
302 |
+
yield "", f"<div style='color: red; padding: 20px;'>Error occurred: {str(e)}</div>"
|
303 |
+
|
304 |
+
# Create Gradio interface with custom CSS
|
305 |
+
css = """
|
306 |
+
.main {
|
307 |
+
gap: 0 !important;
|
308 |
+
}
|
309 |
+
.contain {
|
310 |
+
gap: 0 !important;
|
311 |
+
}
|
312 |
+
.feedback {
|
313 |
+
margin-top: 0 !important;
|
314 |
+
margin-bottom: 0 !important;
|
315 |
+
}
|
316 |
+
"""
|
317 |
+
|
318 |
+
iface = gr.Interface(
|
319 |
+
fn=predict_text_streaming,
|
320 |
+
inputs=gr.Textbox(label="Enter text to classify", lines=3),
|
321 |
+
outputs=[
|
322 |
+
gr.HTML(label="Progress"),
|
323 |
+
gr.HTML(label="Model Predictions")
|
324 |
+
],
|
325 |
+
title="Text Classification Model Comparison",
|
326 |
+
description="Compare predictions from different text classification models (Results stream as they become available)",
|
327 |
+
theme=gr.themes.Soft(),
|
328 |
+
css=css
|
329 |
+
)
|
330 |
+
|
331 |
+
if __name__ == "__main__":
|
332 |
+
iface.launch(debug=True)
|