SeeknnDestroy commited on
Commit
51efdcf
·
unverified ·
1 Parent(s): 7a7432d

update models

Browse files
Files changed (4) hide show
  1. .gitignore +1 -0
  2. __pycache__/config.cpython-310.pyc +0 -0
  3. app.py +95 -70
  4. config.py +52 -0
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ .env
__pycache__/config.cpython-310.pyc ADDED
Binary file (2.04 kB). View file
 
app.py CHANGED
@@ -8,11 +8,10 @@ import time
8
  from transformers import AutoTokenizer, AutoModel
9
  import torch.nn.functional as F
10
  from openai import AzureOpenAI
11
- from huggingface_hub import hf_hub_download
 
12
 
13
- # Download the FastText model from Hugging Face
14
- model_path_fasttext_raw = hf_hub_download(repo_id="talhasarit41/fasttext", filename="fasttext_raw.bin")
15
- model_path_fasttext_preprocessed = hf_hub_download(repo_id="talhasarit41/fasttext", filename="fasttext_preprocessed.bin")
16
 
17
  # Azure OpenAI Configuration
18
  AZURE_API_VERSION = "2024-02-01"
@@ -92,25 +91,33 @@ def get_azure_embedding(text):
92
  def load_models():
93
  models = {}
94
 
95
- # Load pickle models
96
- with open(os.path.join(MODEL_DIR, 'e5_classifier.pkl'), 'rb') as f:
97
- models['E5 Classifier'] = pickle.load(f)
 
 
 
 
 
98
 
99
- with open(os.path.join(MODEL_DIR, 'e5_large_instruct_classifier.pkl'), 'rb') as f:
100
- models['E5-Instruct Classifier'] = pickle.load(f)
101
-
102
- with open(os.path.join(MODEL_DIR, 'azure_classifier.pkl'), 'rb') as f:
103
- models['Azure Classifier'] = pickle.load(f)
104
-
105
- with open(os.path.join(MODEL_DIR, 'azure_knn_classifier.pkl'), 'rb') as f:
106
- models['Azure KNN Classifier'] = pickle.load(f)
107
-
108
- with open(os.path.join(MODEL_DIR, 'gte_classifier.pkl'), 'rb') as f:
109
- models['GTE Classifier'] = pickle.load(f)
110
 
111
  # Load FastText models
112
- models['FastText Raw'] = fasttext.load_model(model_path_fasttext_raw)
113
- models['FastText Preprocessed'] = fasttext.load_model(model_path_fasttext_preprocessed)
 
 
 
 
 
 
 
 
 
 
114
 
115
  return models
116
 
@@ -185,13 +192,20 @@ def predict_text_streaming(text):
185
  models = load_models()
186
  results = []
187
 
 
 
 
 
 
 
 
188
  # First yield empty table and progress bar
189
- yield format_progress(0, "Loading models..."), format_results(results)
190
 
191
- # Process FastText models first (they're fastest as they don't need embeddings)
192
  for model_name, model in models.items():
193
  if isinstance(model, fasttext.FastText._FastText):
194
- yield format_progress(10, f"Processing {model_name}..."), format_results(results)
195
  start_time = time.time()
196
  prediction = model.predict(text)
197
  label = prediction[0][0].replace('__label__', '')
@@ -204,65 +218,76 @@ def predict_text_streaming(text):
204
  'confidence': confidence,
205
  'time': inference_time
206
  })
207
- yield format_progress(20, f"Completed {model_name}"), format_results(results)
 
208
 
209
- # Process E5 models
210
- yield format_progress(30, "Processing E5 Classifier..."), format_results(results)
211
- e5_embedding, embed_time = generate_e5_embedding(text)
212
- for model_name in ['E5 Classifier', 'E5-Instruct Classifier']:
213
- start_time = time.time()
214
- model = models[model_name]
215
- embedding_2d = e5_embedding.reshape(1, -1)
216
- prediction = model.predict(embedding_2d)[0]
217
- probabilities = model.predict_proba(embedding_2d)[0]
218
- confidence = max(probabilities)
219
- inference_time = time.time() - start_time
220
-
221
- results.append({
222
- 'model': model_name,
223
- 'prediction': prediction,
224
- 'confidence': confidence,
225
- 'time': inference_time + embed_time
226
- })
227
- yield format_progress(40, f"Completed {model_name}"), format_results(results)
 
 
 
 
228
 
229
- # Process Azure models
230
- yield format_progress(50, "Processing Azure Embeddings..."), format_results(results)
231
- azure_embedding, embed_time = get_azure_embedding(text)
232
- for model_name in ['Azure Classifier', 'Azure KNN Classifier']:
233
- start_time = time.time()
234
- model = models[model_name]
235
- embedding_2d = azure_embedding.reshape(1, -1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236
  prediction = model.predict(embedding_2d)[0]
237
  probabilities = model.predict_proba(embedding_2d)[0]
238
  confidence = max(probabilities)
239
  inference_time = time.time() - start_time
240
 
241
  results.append({
242
- 'model': model_name,
243
  'prediction': prediction,
244
  'confidence': confidence,
245
  'time': inference_time + embed_time
246
  })
247
- yield format_progress(70, f"Completed {model_name}"), format_results(results)
248
-
249
- # Process GTE model
250
- yield format_progress(90, "Processing GTE Classifier..."), format_results(results)
251
- gte_embedding, embed_time = generate_gte_embedding(text)
252
- model = models['GTE Classifier']
253
- embedding_2d = gte_embedding.reshape(1, -1)
254
- prediction = model.predict(embedding_2d)[0]
255
- probabilities = model.predict_proba(embedding_2d)[0]
256
- confidence = max(probabilities)
257
- inference_time = time.time() - start_time
258
-
259
- results.append({
260
- 'model': 'GTE Classifier',
261
- 'prediction': prediction,
262
- 'confidence': confidence,
263
- 'time': inference_time + embed_time
264
- })
265
- yield format_progress(100, "Completed!"), format_results(results)
266
 
267
  except Exception as e:
268
  yield "", f"<div style='color: red; padding: 20px;'>Error occurred: {str(e)}</div>"
 
8
  from transformers import AutoTokenizer, AutoModel
9
  import torch.nn.functional as F
10
  from openai import AzureOpenAI
11
+ from dotenv import load_dotenv
12
+ from config import get_fasttext_path, is_model_enabled
13
 
14
+ load_dotenv()
 
 
15
 
16
  # Azure OpenAI Configuration
17
  AZURE_API_VERSION = "2024-02-01"
 
91
  def load_models():
92
  models = {}
93
 
94
+ # Load pickle models only if enabled
95
+ pickle_models = {
96
+ 'E5 Classifier': 'e5_classifier.pkl',
97
+ 'E5-Instruct Classifier': 'e5_large_instruct_classifier.pkl',
98
+ 'Azure Classifier': 'azure_classifier.pkl',
99
+ 'Azure KNN Classifier': 'azure_knn_classifier.pkl',
100
+ 'GTE Classifier': 'gte_classifier.pkl'
101
+ }
102
 
103
+ for model_name, filename in pickle_models.items():
104
+ if is_model_enabled(model_name):
105
+ with open(os.path.join(MODEL_DIR, filename), 'rb') as f:
106
+ models[model_name] = pickle.load(f)
 
 
 
 
 
 
 
107
 
108
  # Load FastText models
109
+ if is_model_enabled('FastText Default'):
110
+ models['FastText Default'] = fasttext.load_model(get_fasttext_path('fasttext_default'))
111
+ if is_model_enabled('FastText Preprocessed'):
112
+ models['FastText Preprocessed'] = fasttext.load_model(get_fasttext_path('fasttext_preprocessed'))
113
+ if is_model_enabled('Fasttext WordnNGram 1'):
114
+ models['Fasttext WordnNGram 1'] = fasttext.load_model(get_fasttext_path('word_n_gram_1'))
115
+ if is_model_enabled('Fasttext WordnNGram 2'):
116
+ models['Fasttext WordnNGram 2'] = fasttext.load_model(get_fasttext_path('word_n_gram_2'))
117
+ if is_model_enabled('Fasttext WordnNGram 3'):
118
+ models['Fasttext WordnNGram 3'] = fasttext.load_model(get_fasttext_path('word_n_gram_3'))
119
+ if is_model_enabled('Fasttext Low Overfit'):
120
+ models['Fasttext Low Overfit'] = fasttext.load_model(get_fasttext_path('low_overfit'))
121
 
122
  return models
123
 
 
192
  models = load_models()
193
  results = []
194
 
195
+ if not models:
196
+ return "", "<div style='color: red; padding: 20px;'>No models are enabled in the configuration.</div>"
197
+
198
+ # Calculate progress step based on number of enabled models
199
+ progress_step = 100.0 / len(models)
200
+ current_progress = 0
201
+
202
  # First yield empty table and progress bar
203
+ yield format_progress(current_progress, "Loading models..."), format_results(results)
204
 
205
+ # Process FastText models first (they're fastest)
206
  for model_name, model in models.items():
207
  if isinstance(model, fasttext.FastText._FastText):
208
+ yield format_progress(current_progress, f"Processing {model_name}..."), format_results(results)
209
  start_time = time.time()
210
  prediction = model.predict(text)
211
  label = prediction[0][0].replace('__label__', '')
 
218
  'confidence': confidence,
219
  'time': inference_time
220
  })
221
+ current_progress += progress_step
222
+ yield format_progress(current_progress, f"Completed {model_name}"), format_results(results)
223
 
224
+ # Process E5-based models
225
+ e5_embedding = None
226
+ for model_name, model in models.items():
227
+ if model_name in ['E5 Classifier', 'E5-Instruct Classifier']:
228
+ if e5_embedding is None: # Generate embedding only once
229
+ yield format_progress(current_progress, f"Generating E5 embeddings..."), format_results(results)
230
+ e5_embedding, embed_time = generate_e5_embedding(text)
231
+
232
+ start_time = time.time()
233
+ embedding_2d = e5_embedding.reshape(1, -1)
234
+ prediction = model.predict(embedding_2d)[0]
235
+ probabilities = model.predict_proba(embedding_2d)[0]
236
+ confidence = max(probabilities)
237
+ inference_time = time.time() - start_time
238
+
239
+ results.append({
240
+ 'model': model_name,
241
+ 'prediction': prediction,
242
+ 'confidence': confidence,
243
+ 'time': inference_time + embed_time
244
+ })
245
+ current_progress += progress_step
246
+ yield format_progress(current_progress, f"Completed {model_name}"), format_results(results)
247
 
248
+ # Process Azure-based models
249
+ azure_embedding = None
250
+ for model_name, model in models.items():
251
+ if model_name in ['Azure Classifier', 'Azure KNN Classifier']:
252
+ if azure_embedding is None: # Generate embedding only once
253
+ yield format_progress(current_progress, "Generating Azure embeddings..."), format_results(results)
254
+ azure_embedding, embed_time = get_azure_embedding(text)
255
+
256
+ start_time = time.time()
257
+ embedding_2d = azure_embedding.reshape(1, -1)
258
+ prediction = model.predict(embedding_2d)[0]
259
+ probabilities = model.predict_proba(embedding_2d)[0]
260
+ confidence = max(probabilities)
261
+ inference_time = time.time() - start_time
262
+
263
+ results.append({
264
+ 'model': model_name,
265
+ 'prediction': prediction,
266
+ 'confidence': confidence,
267
+ 'time': inference_time + embed_time
268
+ })
269
+ current_progress += progress_step
270
+ yield format_progress(current_progress, f"Completed {model_name}"), format_results(results)
271
+
272
+ # Process GTE model
273
+ if 'GTE Classifier' in models:
274
+ yield format_progress(current_progress, "Processing GTE Classifier..."), format_results(results)
275
+ gte_embedding, embed_time = generate_gte_embedding(text)
276
+ model = models['GTE Classifier']
277
+ embedding_2d = gte_embedding.reshape(1, -1)
278
  prediction = model.predict(embedding_2d)[0]
279
  probabilities = model.predict_proba(embedding_2d)[0]
280
  confidence = max(probabilities)
281
  inference_time = time.time() - start_time
282
 
283
  results.append({
284
+ 'model': 'GTE Classifier',
285
  'prediction': prediction,
286
  'confidence': confidence,
287
  'time': inference_time + embed_time
288
  })
289
+ current_progress = 100
290
+ yield format_progress(current_progress, "Completed!"), format_results(results)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
291
 
292
  except Exception as e:
293
  yield "", f"<div style='color: red; padding: 20px;'>Error occurred: {str(e)}</div>"
config.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, Any
2
+
3
+ # FastText model paths configuration
4
+ FASTTEXT_CONFIG = {
5
+ "use_huggingface": True, # Set to True in production
6
+ "repo_id": "talhasarit41/fasttext", # HuggingFace repository ID
7
+ "huggingface_paths": {
8
+ "fasttext_default": "fasttext_raw.bin",
9
+ "fasttext_preprocessed": "fasttext_preprocessed.bin",
10
+ "word_n_gram_1": "word_n_gram_1.bin",
11
+ "word_n_gram_2": "word_n_gram_2.bin",
12
+ "word_n_gram_3": "word_n_gram_3.bin",
13
+ "low_overfit": "low_overfit.bin"
14
+ },
15
+ "local_paths": {
16
+ "fasttext_default": "/home/seeknndestroy/jetlink/bitbucket/fasttext_related/saved_models/fasttext_raw.bin",
17
+ "fasttext_preprocessed": "/home/seeknndestroy/jetlink/bitbucket/fasttext_related/saved_models/fasttext_preprocessed.bin",
18
+ "word_n_gram_1": "/home/seeknndestroy/jetlink/bitbucket/fasttext_related/saved_models/manual_configs/word_n_gram_1.bin",
19
+ "word_n_gram_2": "/home/seeknndestroy/jetlink/bitbucket/fasttext_related/saved_models/manual_configs/word_n_gram_2.bin",
20
+ "word_n_gram_3": "/home/seeknndestroy/jetlink/bitbucket/fasttext_related/saved_models/manual_configs/word_n_gram_3.bin",
21
+ "low_overfit": "/home/seeknndestroy/jetlink/bitbucket/fasttext_related/saved_models/manual_configs/low_overfit.bin"
22
+ }
23
+ }
24
+
25
+ # Model enablement configuration
26
+ MODEL_CONFIG = {
27
+ "FastText Default": True,
28
+ "Fasttext Low Overfit": True,
29
+ "Fasttext WordnNGram 1": True,
30
+ "Fasttext WordnNGram 2": True,
31
+ "Fasttext WordnNGram 3": True,
32
+ "E5 Classifier": False,
33
+ "E5-Instruct Classifier": False,
34
+ "Azure Classifier": False,
35
+ "Azure KNN Classifier": False,
36
+ "GTE Classifier": False
37
+ }
38
+
39
+ def get_fasttext_path(model_name: str) -> str:
40
+ """Get the appropriate FastText model path based on configuration."""
41
+ if FASTTEXT_CONFIG["use_huggingface"]:
42
+ from huggingface_hub import hf_hub_download
43
+ return hf_hub_download(
44
+ repo_id=FASTTEXT_CONFIG["repo_id"],
45
+ filename=FASTTEXT_CONFIG["huggingface_paths"][model_name]
46
+ )
47
+ else:
48
+ return FASTTEXT_CONFIG["local_paths"][model_name]
49
+
50
+ def is_model_enabled(model_name: str) -> bool:
51
+ """Check if a model is enabled in the configuration."""
52
+ return MODEL_CONFIG.get(model_name, False)