Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import os | |
import random | |
from datetime import datetime | |
from operator import itemgetter | |
from typing import Sequence | |
import langsmith | |
from langchain.memory import ConversationBufferWindowMemory | |
from langchain_community.document_transformers import LongContextReorder | |
from langchain_core.documents import Document | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_core.runnables import Runnable, RunnableLambda | |
from langchain_openai import ChatOpenAI | |
from zoneinfo import ZoneInfo | |
from rag.retrievers import RetrieversConfig | |
from .prompt_template import generate_prompt_template | |
# Helpers | |
def get_datetime() -> str: | |
"""Get the current date and time.""" | |
return datetime.now(ZoneInfo("America/Vancouver")).strftime("%A, %Y-%b-%d %H:%M:%S") | |
def reorder_documents(docs: list[Document]) -> Sequence[Document]: | |
"""Reorder documents to mitigate performance degradation with long contexts.""" | |
return LongContextReorder().transform_documents(docs) | |
def randomize_documents(documents: list[Document]) -> list[Document]: | |
"""Randomize documents to vary model recommendations.""" | |
random.shuffle(documents) | |
return documents | |
class DocumentFormatter: | |
def __init__(self, prefix: str): | |
self.prefix = prefix | |
def __call__(self, docs: list[Document]) -> str: | |
"""Format the Documents to markdown. | |
Args: | |
docs (list[Documents]): List of Langchain documents | |
Returns: | |
docs (str): | |
""" | |
return "\n---\n".join( | |
[ | |
f"- {self.prefix} {i+1}:\n\n\t" + d.page_content | |
for i, d in enumerate(docs) | |
] | |
) | |
def create_langsmith_client(): | |
"""Create a Langsmith client.""" | |
os.environ["LANGCHAIN_TRACING_V2"] = "true" | |
os.environ["LANGCHAIN_PROJECT"] = "admin-ai-assistant" | |
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com" | |
langsmith_api_key = os.getenv("LANGCHAIN_API_KEY") | |
if not langsmith_api_key: | |
raise EnvironmentError("Missing environment variable: LANGCHAIN_API_KEY") | |
return langsmith.Client() | |
# Set up Runnable and Memory | |
def get_runnable( | |
model: str = "gpt-4o-mini", temperature: float = 0.1 | |
) -> tuple[Runnable, ConversationBufferWindowMemory]: | |
"""Set up runnable and chat memory | |
Args: | |
model_name (str, optional): LLM model. Defaults to "gpt-4o". | |
temperature (float, optional): Model temperature. Defaults to 0.1. | |
Returns: | |
Runnable, Memory: Chain and Memory | |
""" | |
# Set up Langsmith to trace the chain | |
create_langsmith_client() | |
# LLM and prompt template | |
llm = ChatOpenAI( | |
model=model, | |
temperature=temperature, | |
) | |
prompt = generate_prompt_template() | |
# Set retrievers with Hybrid search | |
retrievers_config = RetrieversConfig() | |
# Practitioners data | |
practitioners_data_retriever = retrievers_config.get_practitioners_retriever(k=10) | |
# Tall Tree documents with contact information for locations and services | |
documents_retriever = retrievers_config.get_documents_retriever(k=10) | |
# Set conversation history window memory. It only uses the last k interactions | |
memory = ConversationBufferWindowMemory( | |
memory_key="history", | |
return_messages=True, | |
k=6, | |
) | |
# Set up runnable using LCEL | |
setup = { | |
"practitioners_db": itemgetter("message") | |
| practitioners_data_retriever | |
| DocumentFormatter("Practitioner #"), | |
"tall_tree_db": itemgetter("message") | |
| documents_retriever | |
| DocumentFormatter("No."), | |
"timestamp": lambda _: get_datetime(), | |
"history": RunnableLambda(memory.load_memory_variables) | itemgetter("history"), | |
"message": itemgetter("message"), | |
} | |
chain = setup | prompt | llm | StrOutputParser() | |
return chain, memory | |