Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update rag/retrievers.py
Browse files- rag/retrievers.py +86 -86
rag/retrievers.py
CHANGED
@@ -1,86 +1,86 @@
|
|
1 |
-
import os
|
2 |
-
from functools import lru_cache
|
3 |
-
from typing import Literal
|
4 |
-
|
5 |
-
from langchain_core.vectorstores import VectorStoreRetriever
|
6 |
-
from langchain_openai import OpenAIEmbeddings
|
7 |
-
from langchain_qdrant import FastEmbedSparse, QdrantVectorStore, RetrievalMode
|
8 |
-
|
9 |
-
os.environ["GRPC_VERBOSITY"] = "NONE"
|
10 |
-
|
11 |
-
|
12 |
-
class RetrieversConfig:
|
13 |
-
REQUIRED_ENV_VARS = ["QDRANT_API_KEY", "QDRANT_URL", "OPENAI_API_KEY"]
|
14 |
-
|
15 |
-
def __init__(
|
16 |
-
self,
|
17 |
-
dense_model_name: Literal["text-embedding-3-small"] = "text-embedding-3-small",
|
18 |
-
sparse_model_name: Literal[
|
19 |
-
"prithivida/Splade_PP_en_v1"
|
20 |
-
] = "prithivida/Splade_PP_en_v1",
|
21 |
-
):
|
22 |
-
self._validate_environment()
|
23 |
-
self.qdrant_url = os.getenv("QDRANT_URL")
|
24 |
-
self.qdrant_api_key = os.getenv("QDRANT_API_KEY")
|
25 |
-
self.dense_model_name = dense_model_name
|
26 |
-
self.sparse_model_name = sparse_model_name
|
27 |
-
|
28 |
-
@staticmethod
|
29 |
-
def _validate_environment():
|
30 |
-
missing_vars = [
|
31 |
-
var
|
32 |
-
for var in RetrieversConfig.REQUIRED_ENV_VARS
|
33 |
-
if not os.getenv(var, "").strip()
|
34 |
-
]
|
35 |
-
if missing_vars:
|
36 |
-
raise EnvironmentError(
|
37 |
-
f"Missing or empty environment variable(s): {', '.join(missing_vars)}"
|
38 |
-
)
|
39 |
-
|
40 |
-
@property
|
41 |
-
@lru_cache(maxsize=2)
|
42 |
-
def dense_embeddings(self):
|
43 |
-
return OpenAIEmbeddings(model=self.dense_model_name)
|
44 |
-
|
45 |
-
@property
|
46 |
-
@lru_cache(maxsize=2)
|
47 |
-
def sparse_embeddings(self):
|
48 |
-
return FastEmbedSparse(model_name=self.sparse_model_name)
|
49 |
-
|
50 |
-
@lru_cache(maxsize=8)
|
51 |
-
def get_qdrant_retriever(
|
52 |
-
self,
|
53 |
-
collection_name: str,
|
54 |
-
dense_vector_name: str,
|
55 |
-
sparse_vector_name: str,
|
56 |
-
k: int = 5,
|
57 |
-
) -> VectorStoreRetriever:
|
58 |
-
qdrantdb = QdrantVectorStore.from_existing_collection(
|
59 |
-
embedding=self.dense_embeddings,
|
60 |
-
sparse_embedding=self.sparse_embeddings,
|
61 |
-
url=self.qdrant_url,
|
62 |
-
api_key=self.qdrant_api_key,
|
63 |
-
prefer_grpc=True,
|
64 |
-
collection_name=collection_name,
|
65 |
-
retrieval_mode=RetrievalMode.HYBRID,
|
66 |
-
vector_name=dense_vector_name,
|
67 |
-
sparse_vector_name=sparse_vector_name,
|
68 |
-
)
|
69 |
-
|
70 |
-
return qdrantdb.as_retriever(search_kwargs={"k": k})
|
71 |
-
|
72 |
-
def get_practitioners_retriever(self, k: int = 5) -> VectorStoreRetriever:
|
73 |
-
return self.get_qdrant_retriever(
|
74 |
-
collection_name="
|
75 |
-
dense_vector_name="
|
76 |
-
sparse_vector_name="
|
77 |
-
k=k,
|
78 |
-
)
|
79 |
-
|
80 |
-
def get_documents_retriever(self, k: int = 5) -> VectorStoreRetriever:
|
81 |
-
return self.get_qdrant_retriever(
|
82 |
-
collection_name="
|
83 |
-
dense_vector_name="
|
84 |
-
sparse_vector_name="
|
85 |
-
k=k,
|
86 |
-
)
|
|
|
1 |
+
import os
|
2 |
+
from functools import lru_cache
|
3 |
+
from typing import Literal
|
4 |
+
|
5 |
+
from langchain_core.vectorstores import VectorStoreRetriever
|
6 |
+
from langchain_openai import OpenAIEmbeddings
|
7 |
+
from langchain_qdrant import FastEmbedSparse, QdrantVectorStore, RetrievalMode
|
8 |
+
|
9 |
+
os.environ["GRPC_VERBOSITY"] = "NONE"
|
10 |
+
|
11 |
+
|
12 |
+
class RetrieversConfig:
|
13 |
+
REQUIRED_ENV_VARS = ["QDRANT_API_KEY", "QDRANT_URL", "OPENAI_API_KEY"]
|
14 |
+
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
dense_model_name: Literal["text-embedding-3-small"] = "text-embedding-3-small",
|
18 |
+
sparse_model_name: Literal[
|
19 |
+
"prithivida/Splade_PP_en_v1"
|
20 |
+
] = "prithivida/Splade_PP_en_v1",
|
21 |
+
):
|
22 |
+
self._validate_environment()
|
23 |
+
self.qdrant_url = os.getenv("QDRANT_URL")
|
24 |
+
self.qdrant_api_key = os.getenv("QDRANT_API_KEY")
|
25 |
+
self.dense_model_name = dense_model_name
|
26 |
+
self.sparse_model_name = sparse_model_name
|
27 |
+
|
28 |
+
@staticmethod
|
29 |
+
def _validate_environment():
|
30 |
+
missing_vars = [
|
31 |
+
var
|
32 |
+
for var in RetrieversConfig.REQUIRED_ENV_VARS
|
33 |
+
if not os.getenv(var, "").strip()
|
34 |
+
]
|
35 |
+
if missing_vars:
|
36 |
+
raise EnvironmentError(
|
37 |
+
f"Missing or empty environment variable(s): {', '.join(missing_vars)}"
|
38 |
+
)
|
39 |
+
|
40 |
+
@property
|
41 |
+
@lru_cache(maxsize=2)
|
42 |
+
def dense_embeddings(self):
|
43 |
+
return OpenAIEmbeddings(model=self.dense_model_name)
|
44 |
+
|
45 |
+
@property
|
46 |
+
@lru_cache(maxsize=2)
|
47 |
+
def sparse_embeddings(self):
|
48 |
+
return FastEmbedSparse(model_name=self.sparse_model_name)
|
49 |
+
|
50 |
+
@lru_cache(maxsize=8)
|
51 |
+
def get_qdrant_retriever(
|
52 |
+
self,
|
53 |
+
collection_name: str,
|
54 |
+
dense_vector_name: str,
|
55 |
+
sparse_vector_name: str,
|
56 |
+
k: int = 5,
|
57 |
+
) -> VectorStoreRetriever:
|
58 |
+
qdrantdb = QdrantVectorStore.from_existing_collection(
|
59 |
+
embedding=self.dense_embeddings,
|
60 |
+
sparse_embedding=self.sparse_embeddings,
|
61 |
+
url=self.qdrant_url,
|
62 |
+
api_key=self.qdrant_api_key,
|
63 |
+
prefer_grpc=True,
|
64 |
+
collection_name=collection_name,
|
65 |
+
retrieval_mode=RetrievalMode.HYBRID,
|
66 |
+
vector_name=dense_vector_name,
|
67 |
+
sparse_vector_name=sparse_vector_name,
|
68 |
+
)
|
69 |
+
|
70 |
+
return qdrantdb.as_retriever(search_kwargs={"k": k})
|
71 |
+
|
72 |
+
def get_practitioners_retriever(self, k: int = 5) -> VectorStoreRetriever:
|
73 |
+
return self.get_qdrant_retriever(
|
74 |
+
collection_name="practitioners_hybrid_db_upgrade",
|
75 |
+
dense_vector_name="practitioners_dense_vectors_upgrade",
|
76 |
+
sparse_vector_name="practitioners_sparse_vectors_upgrade",
|
77 |
+
k=k,
|
78 |
+
)
|
79 |
+
|
80 |
+
def get_documents_retriever(self, k: int = 5) -> VectorStoreRetriever:
|
81 |
+
return self.get_qdrant_retriever(
|
82 |
+
collection_name="docs_hybrid_db_upgrade",
|
83 |
+
dense_vector_name="docs_dense_vectors_upgrade",
|
84 |
+
sparse_vector_name="docs_sparse_vectors_upgrade",
|
85 |
+
k=k,
|
86 |
+
)
|