File size: 6,805 Bytes
85ba6af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import logging
# import os
import tiktoken
from transformers import AutoTokenizer
import gradio as gr
logger = logging.getLogger(__name__) # noqa
# hugging face
# hf_token = os.getenv('HUGGINGFACE_TOKEN')
# HfApi().login(token=hf_token)
def load_test_phrases(filename):
with open(f"./data/{filename}", "r", encoding="utf-8") as file:
return file.read().splitlines()
models = ["Xenova/claude-tokenizer", # Anthropic
"meta-llama/Llama-2-7b-chat-hf", # LLAMA-2
"beomi/llama-2-ko-7b", # LLAMA-2-ko
"ai4bharat/Airavata", # ARIVATA
"openaccess-ai-collective/tiny-mistral", # Mistral
"gpt-3.5-turbo", # GPT3.5
"meta-llama/Meta-Llama-3-8B-Instruct", # LLAMA-3
"CohereForAI/aya-23-8B", # AYA
"google/gemma-1.1-2b-it", # GEMMA
"gpt-4o", # GPT4o
"TWO/sutra-mlt256-v2", # SUTRA
"tamang0000/assamese-tokenizer-50k" # Assamese
]
test_phrase_set = [
"I am going for a walk later today",
"நாங்கள் சந்திரனுக்கு ராக்கெட் பயணத்தில் இருக்கிறோம்",
"중성자 산란을 다섯 문장으로 설명해주세요", # Korean,
"मुझे पाँच वाक्यों में न्यूट्रॉन प्रकीर्णन की व्याख्या दीजिए", # Hindi
"mujhe paanch vaakyon mein nyootron prakeernan kee vyaakhya deejie",
"আমাকে পাঁচটি বাক্যে নিউট্রন বিচ্ছুরণের একটি ব্যাখ্যা দিন", # Bengali/Bangla
"Amake pamcati bakye ni'utrana bicchuranera ekati byakhya dina",
"મને પાંચ વાક્યોમાં ન્યુટ્રોન સ્કેટરિંગની સમજૂતી આપો", # Gujarati
"Mane panca vakyomam n'yutrona sketaringani samajuti apo",
"நியூட்ரான் சிதறல் பற்றிய விளக்கத்தை ஐந்து வாக்கியங்களில் கொடுங்கள்", # Tamil
"Niyutran citaral parriya vilakkattai aintu vakkiyankalil kotunkal",
"मला पाच वाक्यात न्यूट्रॉन स्कॅटरिंगचे स्पष्टीकरण द्या", # Marathi
"ఐదు వాక్యాలలో న్యూట్రాన్ స్కాటరింగ్ గురించి నాకు వివరణ ఇవ్వండి", # Telugu
]
test_phrase_set_long_1 = load_test_phrases('multilingualphrases01.txt')
test_phrase_set_long_2 = load_test_phrases('multilingualphrases02.txt')
test_phrase_set_long_3 = load_test_phrases('multilingualphrases03.txt')
def generate_tokens_as_table(text):
table = []
for model in models:
if 'gpt' not in model:
tokenizer = AutoTokenizer.from_pretrained(model)
tokens = tokenizer.encode(text, add_special_tokens=False)
else:
tokenizer = tiktoken.encoding_for_model(model)
tokens = tokenizer.encode(text)
decoded = [tokenizer.decode([t]) for t in tokens]
table.append([model] + decoded)
return table
def generate_tokenizer_table(text):
if not text:
return []
token_counts = {model: 0 for model in models}
vocab_size = {model: 0 for model in models}
for model in models:
if 'gpt' not in model:
tokenizer = AutoTokenizer.from_pretrained(model)
vocab_size[model] = tokenizer.vocab_size
else:
tokenizer = tiktoken.encoding_for_model(model)
vocab_size[model] = tokenizer.n_vocab
token_counts[model] += len(tokenizer.encode(text))
word_count = len(text.split(' '))
output = []
for m in models:
row = [m, vocab_size[m], word_count, token_counts[m], f"{token_counts[m] / word_count:0.2f}"]
output.append(row)
return output
def generate_split_token_table(text):
if not text:
return gr.Dataframe()
table = generate_tokenizer_table(text)
return gr.Dataframe(
table,
headers=['tokenizer', 'v size', '#word', '#token', '#tokens/word'],
datatype=["str", "number", "str"],
row_count=len(models),
col_count=(5, "fixed"),
)
with gr.Blocks() as sutra_token_count:
gr.Markdown(
"""
# Multilingual Tokenizer Specs & Stats.
## Tokenize paragraphs in multiple languages and compare token counts.
Space inspired from [SUTRA](https://huggingface.co/spaces/TWO/sutra-tokenizer-comparison)
""")
textbox = gr.Textbox(label="Input Text")
submit_button = gr.Button("Submit")
output = gr.Dataframe()
examples = [
[' '.join(test_phrase_set_long_1)],
[' '.join(test_phrase_set_long_2)],
[' '.join(test_phrase_set_long_3)],
]
gr.Examples(examples=examples, inputs=[textbox])
submit_button.click(generate_split_token_table, inputs=[textbox], outputs=[output])
def generate_tokens_table(text):
table = generate_tokens_as_table(text)
cols = len(table[0])
return gr.Dataframe(
table,
headers=['model'] + [str(i) for i in range(cols - 1)],
row_count=2,
col_count=(cols, "fixed"),
)
with gr.Blocks() as sutra_tokenize:
gr.Markdown(
"""
# Multilingual Tokenizer Sentence Inspector.
## Tokenize a sentence with various tokenizers and inspect how it's broken down.
Space inspired from [SUTRA](https://huggingface.co/spaces/TWO/sutra-tokenizer-comparison)
""")
textbox = gr.Textbox(label="Input Text")
submit_button = gr.Button("Submit")
output = gr.Dataframe()
examples = test_phrase_set
gr.Examples(examples=examples, inputs=[textbox])
submit_button.click(generate_tokens_table, inputs=[textbox], outputs=[output])
if __name__ == '__main__':
with gr.Blocks(analytics_enabled=False) as demo:
with gr.Row():
gr.Markdown(
"""
## <img src="https://raw.githubusercontent.com/SAGAR-TAMANG/sagar-tamang-official-website-new/master/img/pi.jpg" height="20"/>
"""
)
with gr.Row():
gr.TabbedInterface(
interface_list=[sutra_tokenize, sutra_token_count],
tab_names=["Tokenize Text", "Tokenize Paragraphs"]
)
demo.queue(default_concurrency_limit=5).launch(
server_name="0.0.0.0",
allowed_paths=["/"],
)
|