Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,23 @@
|
|
1 |
from transformers import pipeline
|
2 |
import gradio as gr
|
3 |
|
4 |
-
# Initialize the text generation pipeline
|
5 |
-
pipe = pipeline("text-generation", model="SakanaAI/DiscoPOP-zephyr-7b-gemma")
|
6 |
|
7 |
# Define a function to generate text based on user input
|
8 |
def generate_text(prompt):
|
9 |
result = pipe(prompt, max_length=50, num_return_sequences=1)
|
10 |
return result[0]['generated_text']
|
11 |
|
12 |
-
# Create a Gradio interface
|
13 |
iface = gr.Interface(
|
14 |
fn=generate_text,
|
15 |
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your prompt here..."),
|
16 |
outputs="text",
|
17 |
title="Text Generation with DiscoPOP-zephyr-7b-gemma",
|
18 |
-
description="Enter a prompt and the model will generate a continuation of the text."
|
|
|
|
|
19 |
)
|
20 |
|
21 |
# Launch the interface
|
|
|
1 |
from transformers import pipeline
|
2 |
import gradio as gr
|
3 |
|
4 |
+
# Initialize the text generation pipeline with optimizations
|
5 |
+
pipe = pipeline("text-generation", model="SakanaAI/DiscoPOP-zephyr-7b-gemma", torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
6 |
|
7 |
# Define a function to generate text based on user input
|
8 |
def generate_text(prompt):
|
9 |
result = pipe(prompt, max_length=50, num_return_sequences=1)
|
10 |
return result[0]['generated_text']
|
11 |
|
12 |
+
# Create a Gradio interface with batching enabled
|
13 |
iface = gr.Interface(
|
14 |
fn=generate_text,
|
15 |
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your prompt here..."),
|
16 |
outputs="text",
|
17 |
title="Text Generation with DiscoPOP-zephyr-7b-gemma",
|
18 |
+
description="Enter a prompt and the model will generate a continuation of the text.",
|
19 |
+
batch=True,
|
20 |
+
max_batch_size=4
|
21 |
)
|
22 |
|
23 |
# Launch the interface
|