Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,54 @@
|
|
1 |
-
from transformers import pipeline
|
2 |
-
import gradio as gr
|
3 |
-
import spaces
|
4 |
# Initialize the text generation pipeline with optimizations
|
5 |
-
pipe = pipeline("text-generation", model="SakanaAI/EvoLLM-JP-v1-7B")
|
6 |
|
7 |
|
8 |
# Define a function to generate text based on user input
|
9 |
-
@spaces.GPU
|
10 |
-
def generate_text(prompt):
|
11 |
-
result = pipe(prompt, max_length=50, num_return_sequences=1)
|
12 |
-
|
13 |
|
14 |
# Create a Gradio interface with batching enabled
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
iface = gr.Interface(
|
16 |
-
fn=generate_text,
|
17 |
-
inputs=
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
max_batch_size=4
|
23 |
)
|
24 |
|
25 |
-
|
26 |
-
if __name__ == "__main__":
|
27 |
-
iface.launch()
|
|
|
1 |
+
# from transformers import pipeline
|
2 |
+
# import gradio as gr
|
3 |
+
# import spaces
|
4 |
# Initialize the text generation pipeline with optimizations
|
5 |
+
# pipe = pipeline("text-generation", model="SakanaAI/EvoLLM-JP-v1-7B")
|
6 |
|
7 |
|
8 |
# Define a function to generate text based on user input
|
9 |
+
# @spaces.GPU
|
10 |
+
# def generate_text(prompt):
|
11 |
+
# result = pipe(prompt, max_length=50, num_return_sequences=1)
|
12 |
+
# return result[0]['generated_text']
|
13 |
|
14 |
# Create a Gradio interface with batching enabled
|
15 |
+
# iface = gr.Interface(
|
16 |
+
# fn=generate_text,
|
17 |
+
# inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."),
|
18 |
+
# outputs=gr.Textbox(label="生成されたテキスト"),
|
19 |
+
# title="Text Generation with SakanaAI/EvoLLM-JP-v1-7B",
|
20 |
+
# description="Enter a prompt and the model will generate a continuation of the text.",
|
21 |
+
# batch=True,
|
22 |
+
# max_batch_size=4
|
23 |
+
# )
|
24 |
+
|
25 |
+
# Launch the interface
|
26 |
+
# if __name__ == "__main__":
|
27 |
+
# iface.launch()
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
import gradio as gr
|
32 |
+
from transformers import pipeline, AutoTokenizer
|
33 |
+
|
34 |
+
# 日本語モデルを指定
|
35 |
+
model_name = "SakanaAI/EvoLLM-JP-v1-7B"
|
36 |
+
|
37 |
+
# トークナイザーとパイプラインの設定
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
39 |
+
generator = pipeline('text-generation', model=model_name, tokenizer=tokenizer, device=-1) # device=0はGPUを使用する設定
|
40 |
+
|
41 |
+
def generate_text(prompt, max_length):
|
42 |
+
result = generator(prompt, max_length=max_length, num_return_sequences=1)
|
43 |
+
return result[0]['generated_text']
|
44 |
+
|
45 |
iface = gr.Interface(
|
46 |
+
fn=generate_text,
|
47 |
+
inputs=[
|
48 |
+
gr.Textbox(label="プロンプト", placeholder="ここに日本語のプロンプトを入力してください"),
|
49 |
+
gr.Slider(minimum=10, maximum=200, value=50, step=1, label="最大長")
|
50 |
+
],
|
51 |
+
outputs=gr.Textbox(label="生成されたテキスト")
|
|
|
52 |
)
|
53 |
|
54 |
+
iface.launch()
|
|
|
|