import numpy as np import torch from transformers import WhisperProcessor, WhisperForConditionalGeneration # Whisperモデルとプロセッサのロード model_name = "openai/whisper-base" processor = WhisperProcessor.from_pretrained(model_name) model = WhisperForConditionalGeneration.from_pretrained(model_name) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) SAMPLING_RATE = 16000 def transcribe(chunk: np.ndarray, language: str = "en") -> str: # 言語設定用のトークナイズオプションを設定 forced_decoder_ids = processor.tokenizer.get_decoder_prompt_ids(language=language, task="transcribe") input_features = processor(chunk, sampling_rate=SAMPLING_RATE, return_tensors="pt").input_features.to(device) predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) transcriptions = processor.batch_decode(predicted_ids, skip_special_tokens=True) print(transcriptions) return "\n".join(transcriptions)