# origin: https://github.com/intel/openvino-ai-plugins-gimp/blob/ae93e7291fab6d372c958da18e497acb9d927055/gimpopenvino/tools/openvino_common/models_ov/stable_diffusion_engine.py#L748 import os from typing import Union, Optional, Any, List, Dict import torch from openvino.runtime import Core from diffusers import DiffusionPipeline, LCMScheduler, ImagePipelineOutput from diffusers.image_processor import VaeImageProcessor from transformers import CLIPTokenizer class LatentConsistencyEngine(DiffusionPipeline): def __init__( self, model="SimianLuo/LCM_Dreamshaper_v7", tokenizer="openai/clip-vit-large-patch14", device=["CPU", "CPU", "CPU"], ): super().__init__() try: self.tokenizer = CLIPTokenizer.from_pretrained(model, local_files_only=True) except: self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer) self.tokenizer.save_pretrained(model) self.core = Core() self.core.set_property({'CACHE_DIR': os.path.join(model, 'cache')}) # adding caching to reduce init time # text features print("Text Device:", device[0]) self.text_encoder = self.core.compile_model(os.path.join(model, "text_encoder.xml"), device[0]) self._text_encoder_output = self.text_encoder.output(0) # diffusion print("unet Device:", device[1]) self.unet = self.core.compile_model(os.path.join(model, "unet.xml"), device[1]) self._unet_output = self.unet.output(0) self.infer_request = self.unet.create_infer_request() # decoder print("Vae Device:", device[2]) self.vae_decoder = self.core.compile_model(os.path.join(model, "vae_decoder.xml"), device[2]) self.infer_request_vae = self.vae_decoder.create_infer_request() self.safety_checker = None #pipe.safety_checker self.feature_extractor = None #pipe.feature_extractor self.vae_scale_factor = 2 ** 3 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.scheduler = LCMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" ) def _encode_prompt( self, prompt, num_images_per_prompt, prompt_embeds: None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded num_images_per_prompt (`int`): number of images that should be generated per prompt prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. """ if prompt_embeds is None: text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer( prompt, padding="longest", return_tensors="pt" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[ -1 ] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) prompt_embeds = self.text_encoder(text_input_ids, share_inputs=True, share_outputs=True) prompt_embeds = torch.from_numpy(prompt_embeds[0]) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view( bs_embed * num_images_per_prompt, seq_len, -1 ) # Don't need to get uncond prompt embedding because of LCM Guided Distillation return prompt_embeds def run_safety_checker(self, image, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess( image, output_type="pil" ) else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor( feature_extractor_input, return_tensors="pt" ) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept def prepare_latents( self, batch_size, num_channels_latents, height, width, dtype, latents=None ): shape = ( batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor, ) if latents is None: latents = torch.randn(shape, dtype=dtype) # scale the initial noise by the standard deviation required by the scheduler return latents def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32): """ see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 Args: timesteps: torch.Tensor: generate embedding vectors at these timesteps embedding_dim: int: dimension of the embeddings to generate dtype: data type of the generated embeddings Returns: embedding vectors with shape `(len(timesteps), embedding_dim)` """ assert len(w.shape) == 1 w = w * 1000.0 half_dim = embedding_dim // 2 emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) emb = w.to(dtype)[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = torch.nn.functional.pad(emb, (0, 1)) assert emb.shape == (w.shape[0], embedding_dim) return emb @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, height: Optional[int] = 512, width: Optional[int] = 512, guidance_scale: float = 7.5, scheduler = None, num_images_per_prompt: Optional[int] = 1, latents: Optional[torch.FloatTensor] = None, num_inference_steps: int = 4, lcm_origin_steps: int = 50, prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, model: Optional[Dict[str, any]] = None, seed: Optional[int] = 1234567, cross_attention_kwargs: Optional[Dict[str, Any]] = None, callback = None, callback_userdata = None ): # 1. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if seed is not None: torch.manual_seed(seed) #print("After Step 1: batch size is ", batch_size) # do_classifier_free_guidance = guidance_scale > 0.0 # In LCM Implementation: cfg_noise = noise_cond + cfg_scale * (noise_cond - noise_uncond) , (cfg_scale > 0.0 using CFG) # 2. Encode input prompt prompt_embeds = self._encode_prompt( prompt, num_images_per_prompt, prompt_embeds=prompt_embeds, ) #print("After Step 2: prompt embeds is ", prompt_embeds) #print("After Step 2: scheduler is ", scheduler ) # 3. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, original_inference_steps=lcm_origin_steps) timesteps = self.scheduler.timesteps #print("After Step 3: timesteps is ", timesteps) # 4. Prepare latent variable num_channels_latents = 4 latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, latents, ) latents = latents * self.scheduler.init_noise_sigma #print("After Step 4: ") bs = batch_size * num_images_per_prompt # 5. Get Guidance Scale Embedding w = torch.tensor(guidance_scale).repeat(bs) w_embedding = self.get_w_embedding(w, embedding_dim=256) #print("After Step 5: ") # 6. LCM MultiStep Sampling Loop: with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if callback: callback(i+1, callback_userdata) ts = torch.full((bs,), t, dtype=torch.long) # model prediction (v-prediction, eps, x) model_pred = self.unet([latents, ts, prompt_embeds, w_embedding],share_inputs=True, share_outputs=True)[0] # compute the previous noisy sample x_t -> x_t-1 latents, denoised = self.scheduler.step( torch.from_numpy(model_pred), t, latents, return_dict=False ) progress_bar.update() #print("After Step 6: ") #vae_start = time.time() if not output_type == "latent": image = torch.from_numpy(self.vae_decoder(denoised / 0.18215, share_inputs=True, share_outputs=True)[0]) else: image = denoised #print("vae decoder done", time.time() - vae_start) #post_start = time.time() #if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] #else: # do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] #print ("After do_denormalize: image is ", image) image = self.image_processor.postprocess( image, output_type=output_type, do_denormalize=do_denormalize ) return ImagePipelineOutput([image[0]])