File size: 25,158 Bytes
26364eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
import os
import re
import cv2
import time
import numpy as np
import pandas as pd
import xml.etree.ElementTree as ET
from pathlib import Path
from torchvision import transforms
from configparser import ConfigParser, ExtendedInterpolation
from ast import literal_eval
from src.models.model import Model
from src.models.eval.confusion_matrix import ConfusionMatrix
def generate_inference_from_img_folder(csv_file, model_cfg, img_folder, ckpt_file,
nms_thresh, conf_thresh, device="cuda" ,csv_path=None):
"""[Retrieve the inference information of the test images given a model checkpoint trained]
Parameters
----------
csv_file : [str]
[path of the csv file containing the information of the test images]
model_cfg : [str]
[path of the model config file to use, specific to the checkpoint file]
img_folder : [str]
[folder containing the images]
ckpt_file : [str]
[path of the model checkpoint file to use for model inference]
nms_thresh : [float]
[Non-maximum suppression threshold to use for the model inference, values between 0 to 1]
conf_thresh : [float]
[Confidence threshold to use for the model inference, values between 0 to 1]
device : str, optional
[device to use for inference, option: "cuda" or "cpu"], by default "cuda"
csv_path : [str], optional
[path to save the pandas.DataFrame output as a csv], by default None i.e. csv not generated
Returns
-------
df : [pandas.DataFrame]
[dataframe containing the inference information of the test images]
"""
pl_config = ConfigParser(interpolation=ExtendedInterpolation())
pl_config.read(model_cfg)
model_selected = Model(pl_config)
df_original = pd.read_csv(csv_file)
# Only perform inference on test images with at least 1 ground truth.
df_test = df_original[df_original['remarks_xml'] == 'Available xml file'].reset_index()
df_test = df_test[df_test['set_type'] == 'Test'].reset_index()
img_number = 0
prediction_info_list = []
for _,rows in df_test.iterrows():
img_file = rows["image_file_name"]
img_number += 1
inference_start_time = time.time()
img_file_path = os.path.join(img_folder,img_file)
# Perform inference on image with ckpt file with device either "cuda" or "cpu"
# img_inference = model_selected.inference(device='cpu', img_path=img_file_path, ckpt_path=ckpt_file)
img_inference = model_selected.inference(
device=device, img_path=img_file_path, ckpt_path=ckpt_file, nms_thresh=nms_thresh, conf_thresh=conf_thresh)
# Sieve out inference
predicted_boxes_unsorted = img_inference[0].tolist()
predicted_labels_unsorted = img_inference[1].tolist()
predicted_confidence_unsorted = img_inference[2].tolist()
# print(f"Pre Boxes: {predicted_boxes}")
# print(f"Pre Labels: {predicted_labels}")
# print(f"Pre Labels: {predicted_confidence}")
# Sorting input
predicted_boxes = [x for _,x in sorted(zip(predicted_confidence_unsorted,predicted_boxes_unsorted), reverse=True)]
predicted_labels = [x for _,x in sorted(zip(predicted_confidence_unsorted,predicted_labels_unsorted), reverse=True)]
predicted_confidence = sorted(predicted_confidence_unsorted, reverse=True)
# print(f"Post Boxes: {predicted_boxes}")
# print(f"Post Labels: {predicted_labels}")
# print(f"Post Labels: {predicted_confidence}")
predicted_boxes_int = []
for box in predicted_boxes:
box_int = [round(x) for x in box]
predicted_boxes_int.append(box_int)
# Prepare inputs for confusion matrix
cm_detections_list = []
for prediction in range(len(predicted_boxes)):
detection_list = predicted_boxes[prediction]
detection_list.append(predicted_confidence[prediction])
detection_list.append(predicted_labels[prediction])
cm_detections_list.append(detection_list)
# Re generate predicted boxes
predicted_boxes = [x for _,x in sorted(zip(predicted_confidence_unsorted,predicted_boxes_unsorted), reverse=True)]
inference_time_per_image = round(time.time() - inference_start_time, 2)
if img_number%100 == 0:
print(f'Performing inference on Image {img_number}: {img_file_path}')
print(f'Time taken for image: {inference_time_per_image}')
prediction_info = {
"image_file_path": img_file_path,
"image_file_name": img_file,
"number_of_predictions": len(predicted_boxes),
"predicted_boxes": predicted_boxes,
"predicted_boxes_int": predicted_boxes_int,
"predicted_labels": predicted_labels,
"predicted_confidence": predicted_confidence,
"cm_detections_list": cm_detections_list,
"inference_time": inference_time_per_image
}
prediction_info_list.append(prediction_info)
df = pd.DataFrame(prediction_info_list)
if csv_path is not None:
df.to_csv(csv_path, index=False)
print ("Dataframe saved as csv to " + csv_path)
return df
def get_gt_from_img_folder(csv_file, img_folder, xml_folder, names_file, map_start_index=1, csv_path=None):
"""[Retrieve the ground truth information of the test images]
Parameters
----------
csv_file : [str]
[path of the csv file containing the information of the test images]
img_folder : [str]
[folder containing the images]
xml_folder : [str]
[folder containing the xml files associated with the images]
names_file : [str]
[names file containing the class labels of interest]
map_start_index : int, optional
[attach a number to each class label listed in names file, starting from number given by map_start_index], by default 1
csv_path : [str], optional
[path to save the pandas.DataFrame output as a csv], by default None i.e. csv not generated
Returns
-------
df : [pandas.DataFrame]
[dataframe containing the ground truth information of the test images]
"""
df_original = pd.read_csv(csv_file)
# Only perform inference on test images with at least 1 ground truth.
df_test = df_original[df_original['remarks_xml'] == 'Available xml file'].reset_index()
df_test = df_test[df_test['set_type'] == 'Test'].reset_index()
# Create a dictionary to map numeric class as class labels
class_labels_dict = {}
with open(names_file) as f:
for index,line in enumerate(f):
idx = index + map_start_index
class_labels = line.splitlines()[0]
class_labels_dict[class_labels] = idx
gt_info_list = []
# for img_file in os.listdir(img_folder):
# if re.search(".jpg", img_file):
for _,rows in df_test.iterrows():
img_file = rows["image_file_name"]
# file_stem = Path(img_file_path).stem
# Get img tensor
img_file_path = os.path.join(img_folder,img_file)
img = cv2.imread(filename = img_file_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# Get associated xml file
file_stem = Path(img_file_path).stem
xml_file_path = xml_folder + file_stem + ".xml"
tree = ET.parse(xml_file_path)
root = tree.getroot()
for image_detail in root.findall('size'):
image_width = float(image_detail.find('width').text)
image_height = float(image_detail.find('height').text)
class_index_list = []
bb_list = []
truncated_list = []
occluded_list = []
for item in root.findall('object'):
if item.find('truncated') is not None:
truncated = int(item.find('truncated').text)
else:
truncated = 0
if item.find('occluded').text is not None:
occluded = int(item.find('occluded').text)
else:
occluded = 0
for bb_details in item.findall('bndbox'):
class_label = item.find('name').text
class_index = class_labels_dict[class_label]
xmin = float(bb_details.find('xmin').text)
ymin = float(bb_details.find('ymin').text)
xmax = float(bb_details.find('xmax').text)
ymax = float(bb_details.find('ymax').text)
class_index_list.append(class_index)
bb_list.append([xmin,ymin,xmax,ymax])
truncated_list.append(truncated)
occluded_list.append(occluded)
transform = A.Compose([
A.Resize(608,608),
ToTensor()
],
bbox_params=A.BboxParams(format='pascal_voc',
label_fields=['class_labels']),
)
augmented = transform(image=img, bboxes = bb_list, class_labels = class_index_list)
# img comes out as int, need to change to float.
img = augmented['image'].float()
gt_boxes = augmented['bboxes']
gt_boxes_list = [list(box) for box in gt_boxes]
gt_labels = augmented['class_labels']
gt_boxes_int = []
for box in gt_boxes:
box_int = [round(x) for x in box]
gt_boxes_int.append(box_int)
cm_gt_list = []
for gt in range(len(gt_boxes)):
gt_list = [gt_labels[gt]]
gt_list.extend(gt_boxes[gt])
cm_gt_list.append(gt_list)
# Calculate and Group by Size of Ground Truth
gt_area_list = []
gt_area_type = []
for gt_box in gt_boxes:
gt_area = (gt_box[3] - gt_box[1]) * (gt_box[2] - gt_box[0])
gt_area_list.append(gt_area)
if gt_area < 32*32:
area_type = "S"
gt_area_type.append(area_type)
elif gt_area < 96*96:
area_type = "M"
gt_area_type.append(area_type)
else:
area_type = "L"
gt_area_type.append(area_type)
gt_info = {
"image_file_path": img_file_path,
"image_file_name": img_file,
"image_width": image_width,
"image_height": image_height,
"number_of_gt": len(gt_boxes_list),
"gt_labels": gt_labels,
"gt_boxes": gt_boxes_list,
"gt_boxes_int": gt_boxes_int,
"cm_gt_list": cm_gt_list,
"gt_area_list": gt_area_list,
"gt_area_type": gt_area_type,
"truncated_list": truncated_list,
"occluded_list": occluded_list
}
gt_info_list.append(gt_info)
df = pd.DataFrame(gt_info_list)
if csv_path is not None:
df.to_csv(csv_path, index=False)
print ("Dataframe saved as csv to " + csv_path)
return df
def combine_gt_predictions(csv_file, img_folder, xml_folder, names_file, model_cfg, ckpt_file, csv_save_folder,
device="cuda", nms_threshold=0.1, confidence_threshold=0.7, iou_threshold=0.4, gt_statistics=True):
"""[Retrieve the combined inference and ground truth information of the test images]
Parameters
----------
csv_file : [str]
[path of the csv file containing the information of the test images]
img_folder : [str]
[folder containing the images]
xml_folder : [str]
[folder containing the xml files associated with the images]
names_file : [str]
[names file containing the class labels of interest]
model_cfg : [str]
[path of the model config file to use, specific to the checkpoint file]
ckpt_file : [str]
[path of the model checkpoint file to use for model inference]
csv_save_folder : [str]
[folder to save the generated csv files]
device : str, optional
[device to use for inference, option: "cuda" or "cpu"], by default "cuda"
nms_threshold : float, optional
[Non-maximum suppression threshold to use for the model inference, values between 0 to 1], by default 0.1
confidence_threshold : float, optional
[Confidence threshold to use for the model inference, values between 0 to 1], by default 0.7
iou_threshold : float, optional
[IOU threshold to use for identifying true positives from the predictions and ground truth], by default 0.4
gt_statistics : bool, optional
[option to generate the df_gt_analysis], by default True
Returns
-------
df_full : [pandas.DataFrame]
[dataframe containing the combined inference and ground truth information of the test images by image]
df_gt_analysis : pandas.DataFrame, optional
[dataframe containing the combined inference and ground truth information of the test images by ground truth]
"""
print(f"NMS Threshold: {nms_threshold}")
print(f"Confidence Threshold: {confidence_threshold}")
print(f"IOU Threshold: {iou_threshold}")
df_gt = get_gt_from_img_folder(
csv_file, img_folder, xml_folder, names_file)
print("Successful Generation of Ground Truth Information")
df_predictions = generate_inference_from_img_folder(
csv_file, model_cfg, img_folder, ckpt_file,
nms_thresh=nms_threshold, conf_thresh=confidence_threshold, device=device)
print("Successful Generation of Inference")
df_all = pd.merge(df_gt, df_predictions, how='left', on=["image_file_path", "image_file_name"])
print("Successful Merging")
class_labels_list = []
with open(names_file) as f:
for index,line in enumerate(f):
class_labels = line.splitlines()[0]
class_labels_list.append(class_labels)
combined_info_list = []
for _,rows in df_all.iterrows():
img_file = rows["image_file_name"]
predicted_boxes = rows["predicted_boxes"]
predicted_labels = rows["predicted_labels"]
predicted_confidence = rows["predicted_confidence"]
gt_boxes = rows["gt_boxes"]
gt_labels = rows["gt_labels"]
cm_gt_list = rows["cm_gt_list"]
cm_detections_list = rows["cm_detections_list"]
if rows["number_of_predictions"] == 0:
# Ground Truth Analysis
gt_summary_list = []
gt_match_list = []
gt_match_idx_list = []
gt_match_idx_conf_list = []
gt_match_idx_bb_list = []
for idx in range(len(gt_labels)):
gt_summary = "NO"
match = ["GT", idx, "-"]
match_idx = "-"
match_bb = "-"
gt_summary_list.append(gt_summary)
gt_match_list.append(tuple(match))
gt_match_idx_list.append(match_idx)
gt_match_idx_conf_list.append(match_idx)
gt_match_idx_bb_list.append(match_bb)
combined_info = {
"image_file_name": img_file,
"number_of_predictions_conf": [],
"predicted_labels_conf": [],
"predicted_confidence_conf": [],
"num_matches": [],
"num_mismatch": [],
"labels_hit": [],
"pairs_mislabel_gt_prediction": [],
"gt_match_idx_list": gt_match_idx_list,
"gt_match_idx_conf_list": gt_match_idx_conf_list,
"gt_match_idx_bb_list": gt_match_idx_bb_list,
"prediction_match": [],
"gt_analysis": gt_summary_list,
"prediction_analysis": [],
"gt_match": gt_match_list
}
else:
# Generate Confusion Matrix with their corresponding matches
CM = ConfusionMatrix(
num_classes=len(class_labels_list)+1,
CONF_THRESHOLD = confidence_threshold,
IOU_THRESHOLD = iou_threshold)
matching_boxes = CM.process_batch(
detections=np.asarray(cm_detections_list),
labels=np.asarray(cm_gt_list),
return_matches=True)
predicted_confidence_count = len([confidence for confidence in predicted_confidence if confidence > confidence_threshold])
predicted_confidence_round = [round(confidence, 4) for confidence in predicted_confidence]
predicted_confidence_conf = predicted_confidence_round[:predicted_confidence_count]
predicted_labels_conf = predicted_labels[:predicted_confidence_count]
predicted_boxes_conf = predicted_boxes[:predicted_confidence_count]
number_of_predictions_conf = len(predicted_labels_conf)
match_correct_list = []
match_wrong_list = []
gt_matched_idx_dict = {}
predicted_matched_idx_dict = {}
gt_mismatch_idx_dict = {}
predicted_mismatch_idx_dict = {}
labels_hit = []
pairs_mislabel_gt_prediction = []
for match in matching_boxes:
gt_idx = int(match[0])
predicted_idx = int(match[1])
iou = round(match[2], 4)
match = [gt_idx, predicted_idx, iou]
if gt_labels[gt_idx] == predicted_labels_conf[predicted_idx]:
match_correct_list.append(match)
gt_matched_idx_dict[gt_idx] = match
predicted_matched_idx_dict[predicted_idx] = match
labels_hit.append(gt_labels[gt_idx])
else:
match_wrong_list.append(match)
gt_mismatch_idx_dict[gt_idx] = match
predicted_mismatch_idx_dict[predicted_idx] = match
pairs_mislabel_gt_prediction.append(
[gt_labels[gt_idx],predicted_labels_conf[predicted_idx]])
# Ground Truth Analysis
gt_summary_list = []
gt_match_list = []
gt_match_idx_list = []
gt_match_idx_conf_list = []
gt_match_idx_bb_list = []
for idx in range(len(gt_labels)):
if idx in gt_matched_idx_dict.keys():
gt_summary = "MATCH"
match = gt_matched_idx_dict[idx]
match_idx = predicted_labels_conf[match[1]]
match_conf = predicted_confidence_conf[match[1]]
match_bb = predicted_boxes_conf[match[1]]
elif idx in gt_mismatch_idx_dict.keys():
gt_summary = "MISMATCH"
match = gt_mismatch_idx_dict[idx]
match_idx = predicted_labels_conf[match[1]]
match_conf = predicted_confidence_conf[match[1]]
match_bb = predicted_boxes_conf[match[1]]
else:
gt_summary = "NO"
match = ["GT", idx, "-"]
match_idx = "-"
match_conf = "-"
match_bb = "-"
gt_summary_list.append(gt_summary)
gt_match_list.append(tuple(match))
gt_match_idx_list.append(match_idx)
gt_match_idx_conf_list.append(match_conf)
gt_match_idx_bb_list.append(match_bb)
# Prediction Analysis
prediction_summary_list = []
prediction_match_list = []
for idx in range(len(predicted_labels_conf)):
if idx in predicted_matched_idx_dict.keys():
prediction_summary = "MATCH"
match = predicted_matched_idx_dict[idx]
elif idx in predicted_mismatch_idx_dict.keys():
prediction_summary = "MISMATCH"
match = predicted_mismatch_idx_dict[idx]
else:
prediction_summary = "NO"
match = [idx, "P", "-"]
prediction_summary_list.append(prediction_summary)
prediction_match_list.append(tuple(match))
combined_info = {
"image_file_name": img_file,
"number_of_predictions_conf": number_of_predictions_conf,
"predicted_labels_conf": predicted_labels_conf,
"predicted_confidence_conf": predicted_confidence_conf,
"num_matches": len(match_correct_list),
"num_mismatch": len(match_wrong_list),
"labels_hit": labels_hit,
"pairs_mislabel_gt_prediction": pairs_mislabel_gt_prediction,
"gt_match_idx_list": gt_match_idx_list,
"gt_match_idx_conf_list": gt_match_idx_conf_list,
"gt_match_idx_bb_list": gt_match_idx_bb_list,
"gt_match": gt_match_list,
"prediction_match": prediction_match_list,
"gt_analysis": gt_summary_list,
"prediction_analysis": prediction_summary_list
}
combined_info_list.append(combined_info)
df_combined = pd.DataFrame(combined_info_list)
df_full = pd.merge(df_all, df_combined , how='left', on=["image_file_name"])
csv_path_combined = f"{csv_save_folder}df_inference_details_nms_{nms_threshold}_conf_{confidence_threshold}_iou_{iou_threshold}.csv"
df_full.to_csv(csv_path_combined, index=False)
print ("Dataframe saved as csv to " + csv_path_combined)
if gt_statistics:
print("Generating Statistics for Single Ground Truth")
csv_path_gt = f"{csv_save_folder}df_gt_details_nms_{nms_threshold}_conf_{confidence_threshold}_iou_{iou_threshold}.csv"
df_gt_analysis = __get_single_gt_analysis(csv_output=csv_path_gt, df_input=df_full)
return df_full, df_gt_analysis
else:
return df_full
def __get_single_gt_analysis(csv_output, df_input=None,csv_input=None):
if df_input is None:
df_gt = pd.read_csv(csv_input)
# Apply literal eval of columns containing information on Ground Truth
df_gt.gt_labels = df_gt.gt_labels.apply(literal_eval)
df_gt.gt_boxes = df_gt.gt_boxes.apply(literal_eval)
df_gt.gt_boxes_int = df_gt.gt_boxes_int.apply(literal_eval)
df_gt.gt_area_list = df_gt.gt_area_list.apply(literal_eval)
df_gt.gt_area_type = df_gt.gt_area_type.apply(literal_eval)
df_gt.truncated_list = df_gt.truncated_list.apply(literal_eval)
df_gt.occluded_list = df_gt.occluded_list.apply(literal_eval)
df_gt.gt_match_idx_list = df_gt.gt_match_idx_list.apply(literal_eval)
df_gt.gt_match_idx_conf_list = df_gt.gt_match_idx_conf_list.apply(literal_eval)
df_gt.gt_match_idx_bb_list = df_gt.gt_match_idx_bb_list.apply(literal_eval)
df_gt.gt_match = df_gt.gt_match.apply(literal_eval)
df_gt.gt_analysis = df_gt.gt_analysis.apply(literal_eval)
else:
df_gt = df_input
gt_info_list = []
for _,rows in df_gt.iterrows():
# print(rows["image_file_name"])
for idx in range(rows["number_of_gt"]):
df_gt_image_dict = {
"GT_Image": rows["image_file_name"],
"GT_Label": rows["gt_labels"][idx],
"GT_Boxes": rows["gt_boxes"][idx],
"GT_Boxes_Int": rows["gt_boxes_int"][idx],
"GT_Area": rows["gt_area_list"][idx],
"GT_Area_Type": rows["gt_area_type"][idx],
"Truncated": rows["truncated_list"][idx],
"Occluded": rows["occluded_list"][idx],
"GT_Match": rows["gt_match"][idx],
"IOU": rows["gt_match"][idx][2],
"GT_Match_IDX": rows["gt_match_idx_list"][idx],
"GT_Confidence_IDX": rows["gt_match_idx_conf_list"][idx],
"GT_Predicted_Boxes_IDX": rows["gt_match_idx_bb_list"][idx],
"GT_Analysis": rows["gt_analysis"][idx]
}
gt_info_list.append(df_gt_image_dict)
df_final = pd.DataFrame(gt_info_list)
df_final = df_final.reset_index(drop=True)
df_final.to_csv(csv_output, index=False)
print ("Dataframe saved as csv to " + csv_output)
return df_final
if __name__ == '__main__':
combine_gt_predictions(
csv_file="/polyaxon-data/workspace/stee/voc_image_annotations_batch123.csv",
img_folder="/polyaxon-data/workspace/stee/data_batch123",
xml_folder="/polyaxon-data/workspace/stee/data_batch123/Annotations/",
names_file="/polyaxon-data/workspace/stee/data_batch123/obj.names",
model_cfg="cfg/cfg_frcn.ini",
ckpt_file="/polyaxon-data/workspace/stee/andy/epoch=99-step=61899.ckpt",
csv_save_folder="/polyaxon-data/workspace/stee/andy/generation/",
nms_threshold=0.9,
confidence_threshold=0.3,
iou_threshold=0.4,
gt_statistics=False) |