File size: 25,158 Bytes
26364eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
import os
import re
import cv2
import time

import numpy as np
import pandas as pd
import xml.etree.ElementTree as ET

from pathlib import Path
from torchvision import transforms
from configparser import ConfigParser, ExtendedInterpolation
from ast import literal_eval

from src.models.model import Model
from src.models.eval.confusion_matrix import ConfusionMatrix


def generate_inference_from_img_folder(csv_file, model_cfg, img_folder, ckpt_file, 
nms_thresh, conf_thresh, device="cuda" ,csv_path=None):
    """[Retrieve the inference information of the test images given a model checkpoint trained]

    Parameters
    ----------
    csv_file : [str]
        [path of the csv file containing the information of the test images]
    model_cfg : [str]
        [path of the model config file to use, specific to the checkpoint file]
    img_folder : [str]
        [folder containing the images]
    ckpt_file : [str]
        [path of the model checkpoint file to use for model inference]
    nms_thresh : [float]
        [Non-maximum suppression threshold to use for the model inference, values between 0 to 1]
    conf_thresh : [float]
        [Confidence threshold to use for the model inference, values between 0 to 1]
    device : str, optional
        [device to use for inference, option: "cuda" or "cpu"], by default "cuda"
    csv_path : [str], optional
        [path to save the pandas.DataFrame output as a csv], by default None i.e. csv not generated 

    Returns
    -------
    df : [pandas.DataFrame]
        [dataframe containing the inference information of the test images]
    """

    pl_config = ConfigParser(interpolation=ExtendedInterpolation())
    pl_config.read(model_cfg)
    
    model_selected = Model(pl_config)

    df_original = pd.read_csv(csv_file)
    # Only perform inference on test images with at least 1 ground truth.
    df_test = df_original[df_original['remarks_xml'] == 'Available xml file'].reset_index()
    df_test = df_test[df_test['set_type'] == 'Test'].reset_index()

    img_number = 0
    prediction_info_list = []
    for _,rows in df_test.iterrows():
        img_file = rows["image_file_name"]
        img_number += 1
        inference_start_time = time.time()
        img_file_path = os.path.join(img_folder,img_file)

        # Perform inference on image with ckpt file with device either "cuda" or "cpu"
        # img_inference = model_selected.inference(device='cpu', img_path=img_file_path, ckpt_path=ckpt_file)
        img_inference = model_selected.inference(
            device=device, img_path=img_file_path, ckpt_path=ckpt_file, nms_thresh=nms_thresh, conf_thresh=conf_thresh)

        # Sieve out inference
        predicted_boxes_unsorted = img_inference[0].tolist()
        predicted_labels_unsorted = img_inference[1].tolist()
        predicted_confidence_unsorted = img_inference[2].tolist()
        
        # print(f"Pre Boxes: {predicted_boxes}")
        # print(f"Pre Labels: {predicted_labels}")
        # print(f"Pre Labels: {predicted_confidence}")

        # Sorting input
        predicted_boxes = [x for _,x in sorted(zip(predicted_confidence_unsorted,predicted_boxes_unsorted), reverse=True)]
        predicted_labels = [x for _,x in sorted(zip(predicted_confidence_unsorted,predicted_labels_unsorted), reverse=True)]
        predicted_confidence = sorted(predicted_confidence_unsorted, reverse=True)

        # print(f"Post Boxes: {predicted_boxes}")
        # print(f"Post Labels: {predicted_labels}")
        # print(f"Post Labels: {predicted_confidence}")

        predicted_boxes_int = []
        for box in predicted_boxes:
            box_int = [round(x) for x in box]
            predicted_boxes_int.append(box_int)
        
        # Prepare inputs for confusion matrix
        cm_detections_list = []
        for prediction in range(len(predicted_boxes)):
            detection_list = predicted_boxes[prediction]
            detection_list.append(predicted_confidence[prediction])
            detection_list.append(predicted_labels[prediction])
            cm_detections_list.append(detection_list)

        # Re generate predicted boxes
        predicted_boxes = [x for _,x in sorted(zip(predicted_confidence_unsorted,predicted_boxes_unsorted), reverse=True)]
        
        inference_time_per_image = round(time.time() - inference_start_time, 2)
        if img_number%100 == 0: 
            print(f'Performing inference on Image {img_number}: {img_file_path}')
            print(f'Time taken for image: {inference_time_per_image}')

        prediction_info = {
            "image_file_path": img_file_path,
            "image_file_name": img_file,
            "number_of_predictions": len(predicted_boxes),
            "predicted_boxes": predicted_boxes,
            "predicted_boxes_int": predicted_boxes_int,
            "predicted_labels": predicted_labels,
            "predicted_confidence": predicted_confidence,
            "cm_detections_list": cm_detections_list,
            "inference_time": inference_time_per_image
        }
        prediction_info_list.append(prediction_info)

    df = pd.DataFrame(prediction_info_list)
    
    if csv_path is not None:
        df.to_csv(csv_path, index=False)
        print ("Dataframe saved as csv to " + csv_path)

    return df

def get_gt_from_img_folder(csv_file, img_folder, xml_folder, names_file, map_start_index=1, csv_path=None):
    """[Retrieve the ground truth information of the test images]

    Parameters
    ----------
    csv_file : [str]
        [path of the csv file containing the information of the test images]
    img_folder : [str]
        [folder containing the images]
    xml_folder : [str]
        [folder containing the xml files associated with the images]
    names_file : [str]
        [names file containing the class labels of interest]
    map_start_index : int, optional
        [attach a number to each class label listed in names file, starting from number given by map_start_index], by default 1
    csv_path : [str], optional
        [path to save the pandas.DataFrame output as a csv], by default None i.e. csv not generated

    Returns
    -------
    df : [pandas.DataFrame]
        [dataframe containing the ground truth information of the test images]
    """

    df_original = pd.read_csv(csv_file)

    # Only perform inference on test images with at least 1 ground truth.
    df_test = df_original[df_original['remarks_xml'] == 'Available xml file'].reset_index()
    df_test = df_test[df_test['set_type'] == 'Test'].reset_index()
    
    # Create a dictionary to map numeric class as class labels
    class_labels_dict = {}
    with open(names_file) as f:
        for index,line in enumerate(f):
            idx = index + map_start_index
            class_labels = line.splitlines()[0]
            class_labels_dict[class_labels] = idx

    gt_info_list = []
    # for img_file in os.listdir(img_folder):
    #     if re.search(".jpg", img_file):    
    for _,rows in df_test.iterrows():
        img_file = rows["image_file_name"]
        # file_stem = Path(img_file_path).stem

        # Get img tensor            
        img_file_path = os.path.join(img_folder,img_file)
        img = cv2.imread(filename = img_file_path)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

        # Get associated xml file 
        file_stem = Path(img_file_path).stem
        xml_file_path =  xml_folder + file_stem + ".xml"

        tree = ET.parse(xml_file_path)
        root = tree.getroot()

        for image_detail in root.findall('size'):
            image_width = float(image_detail.find('width').text)
            image_height = float(image_detail.find('height').text)
            
        class_index_list = []
        bb_list = []
        truncated_list = []
        occluded_list = []
        for item in root.findall('object'):                
            if item.find('truncated') is not None:
                truncated = int(item.find('truncated').text)
            else:
                truncated = 0

            if item.find('occluded').text is not None:
                occluded = int(item.find('occluded').text)
            else:
                occluded = 0

            for bb_details in item.findall('bndbox'):
                class_label = item.find('name').text
                class_index = class_labels_dict[class_label]
                xmin = float(bb_details.find('xmin').text)
                ymin = float(bb_details.find('ymin').text)
                xmax = float(bb_details.find('xmax').text)
                ymax = float(bb_details.find('ymax').text)

                class_index_list.append(class_index)
                bb_list.append([xmin,ymin,xmax,ymax])
                truncated_list.append(truncated)
                occluded_list.append(occluded)

        transform = A.Compose([
            A.Resize(608,608),
            ToTensor()
            ],
            bbox_params=A.BboxParams(format='pascal_voc',
            label_fields=['class_labels']),
            )

        augmented = transform(image=img, bboxes = bb_list, class_labels = class_index_list)
        # img comes out as int, need to change to float.
        img = augmented['image'].float()
        gt_boxes = augmented['bboxes']
        gt_boxes_list = [list(box) for box in gt_boxes]
        gt_labels = augmented['class_labels'] 
        
        gt_boxes_int = []
        for box in gt_boxes:
            box_int = [round(x) for x in box]
            gt_boxes_int.append(box_int)       

        cm_gt_list = []     
        for gt in range(len(gt_boxes)):
            gt_list = [gt_labels[gt]]
            gt_list.extend(gt_boxes[gt])
            cm_gt_list.append(gt_list)

        # Calculate and Group by Size of Ground Truth 
        gt_area_list = []
        gt_area_type = []
        for gt_box in gt_boxes:
            gt_area = (gt_box[3] - gt_box[1]) * (gt_box[2] - gt_box[0])
            gt_area_list.append(gt_area)

            if gt_area < 32*32:
                area_type = "S"
                gt_area_type.append(area_type)       
            elif gt_area < 96*96:
                area_type = "M"
                gt_area_type.append(area_type)  
            else:
                area_type = "L"
                gt_area_type.append(area_type)
        
        gt_info = {
            "image_file_path": img_file_path,
            "image_file_name": img_file,
            "image_width": image_width,
            "image_height": image_height,
            "number_of_gt": len(gt_boxes_list),
            "gt_labels": gt_labels,
            "gt_boxes": gt_boxes_list,
            "gt_boxes_int": gt_boxes_int,
            "cm_gt_list": cm_gt_list,
            "gt_area_list": gt_area_list,
            "gt_area_type": gt_area_type,
            "truncated_list": truncated_list,
            "occluded_list": occluded_list
        }
        gt_info_list.append(gt_info)

    df = pd.DataFrame(gt_info_list)
    
    if csv_path is not None:
        df.to_csv(csv_path, index=False)
        print ("Dataframe saved as csv to " + csv_path)

    return df

def combine_gt_predictions(csv_file, img_folder, xml_folder, names_file, model_cfg, ckpt_file, csv_save_folder, 
device="cuda", nms_threshold=0.1, confidence_threshold=0.7, iou_threshold=0.4, gt_statistics=True):
    """[Retrieve the combined inference and ground truth information of the test images]

    Parameters
    ----------
    csv_file : [str]
        [path of the csv file containing the information of the test images]
    img_folder : [str]
        [folder containing the images]
    xml_folder : [str]
        [folder containing the xml files associated with the images]
    names_file : [str]
        [names file containing the class labels of interest]
    model_cfg : [str]
        [path of the model config file to use, specific to the checkpoint file]
    ckpt_file : [str]
        [path of the model checkpoint file to use for model inference]
    csv_save_folder : [str]
        [folder to save the generated csv files]
    device : str, optional
        [device to use for inference, option: "cuda" or "cpu"], by default "cuda"
    nms_threshold : float, optional
        [Non-maximum suppression threshold to use for the model inference, values between 0 to 1], by default 0.1
    confidence_threshold : float, optional
        [Confidence threshold to use for the model inference, values between 0 to 1], by default 0.7
    iou_threshold : float, optional
        [IOU threshold to use for identifying true positives from the predictions and ground truth], by default 0.4
    gt_statistics : bool, optional
        [option to generate the df_gt_analysis], by default True

    Returns
    -------
    df_full : [pandas.DataFrame]
        [dataframe containing the combined inference and ground truth information of the test images by image]
    df_gt_analysis : pandas.DataFrame, optional
        [dataframe containing the combined inference and ground truth information of the test images by ground truth]
    """

    print(f"NMS Threshold: {nms_threshold}")
    print(f"Confidence Threshold: {confidence_threshold}")
    print(f"IOU Threshold: {iou_threshold}")
        
    df_gt = get_gt_from_img_folder(
        csv_file, img_folder, xml_folder, names_file)
    print("Successful Generation of Ground Truth Information")
    df_predictions = generate_inference_from_img_folder(
        csv_file, model_cfg, img_folder, ckpt_file, 
        nms_thresh=nms_threshold, conf_thresh=confidence_threshold, device=device)
    print("Successful Generation of Inference")

    df_all = pd.merge(df_gt, df_predictions, how='left', on=["image_file_path", "image_file_name"])
    print("Successful Merging")
    
    class_labels_list = []
    with open(names_file) as f:
        for index,line in enumerate(f):
            class_labels = line.splitlines()[0]
            class_labels_list.append(class_labels)

    combined_info_list = []
    for _,rows in df_all.iterrows():
        img_file = rows["image_file_name"]
        predicted_boxes = rows["predicted_boxes"]
        predicted_labels = rows["predicted_labels"]
        predicted_confidence = rows["predicted_confidence"]
        gt_boxes = rows["gt_boxes"]
        gt_labels = rows["gt_labels"]
        cm_gt_list = rows["cm_gt_list"]
        cm_detections_list = rows["cm_detections_list"]
        
        if rows["number_of_predictions"] == 0:
            # Ground Truth Analysis
            gt_summary_list = []
            gt_match_list = []            
            gt_match_idx_list = []
            gt_match_idx_conf_list = []
            gt_match_idx_bb_list = []
            for idx in range(len(gt_labels)):
                gt_summary = "NO"
                match = ["GT", idx, "-"]
                match_idx = "-"
                match_bb = "-"
                gt_summary_list.append(gt_summary)
                gt_match_list.append(tuple(match))
                gt_match_idx_list.append(match_idx)
                gt_match_idx_conf_list.append(match_idx)
                gt_match_idx_bb_list.append(match_bb)

            combined_info = {
                "image_file_name": img_file,
                "number_of_predictions_conf": [],
                "predicted_labels_conf": [],
                "predicted_confidence_conf": [],
                "num_matches": [],
                "num_mismatch": [],
                "labels_hit": [],
                "pairs_mislabel_gt_prediction": [],
                "gt_match_idx_list": gt_match_idx_list,
                "gt_match_idx_conf_list": gt_match_idx_conf_list,
                "gt_match_idx_bb_list": gt_match_idx_bb_list,
                "prediction_match": [],
                "gt_analysis": gt_summary_list,
                "prediction_analysis": [],
                "gt_match": gt_match_list
            }
        
        else:

            # Generate Confusion Matrix with their corresponding matches
            CM = ConfusionMatrix(
                num_classes=len(class_labels_list)+1, 
                CONF_THRESHOLD = confidence_threshold, 
                IOU_THRESHOLD = iou_threshold)

            matching_boxes = CM.process_batch(
                detections=np.asarray(cm_detections_list),
                labels=np.asarray(cm_gt_list),
                return_matches=True)
            
            predicted_confidence_count = len([confidence for confidence in predicted_confidence if confidence > confidence_threshold]) 
            predicted_confidence_round = [round(confidence, 4) for confidence in predicted_confidence]

            predicted_confidence_conf = predicted_confidence_round[:predicted_confidence_count]
            predicted_labels_conf = predicted_labels[:predicted_confidence_count]
            predicted_boxes_conf = predicted_boxes[:predicted_confidence_count]

            number_of_predictions_conf = len(predicted_labels_conf)

            match_correct_list = []
            match_wrong_list = []
            gt_matched_idx_dict = {}
            predicted_matched_idx_dict = {}
            gt_mismatch_idx_dict = {}
            predicted_mismatch_idx_dict = {}
            labels_hit = []
            pairs_mislabel_gt_prediction = []

            for match in matching_boxes:            
                gt_idx = int(match[0])
                predicted_idx = int(match[1])
                iou = round(match[2], 4)
                match = [gt_idx, predicted_idx, iou]        

                if gt_labels[gt_idx] == predicted_labels_conf[predicted_idx]:
                    match_correct_list.append(match)
                    gt_matched_idx_dict[gt_idx] = match
                    predicted_matched_idx_dict[predicted_idx] = match
                    labels_hit.append(gt_labels[gt_idx])
                else:
                    match_wrong_list.append(match)
                    gt_mismatch_idx_dict[gt_idx] = match
                    predicted_mismatch_idx_dict[predicted_idx] = match
                    pairs_mislabel_gt_prediction.append(
                        [gt_labels[gt_idx],predicted_labels_conf[predicted_idx]])

            # Ground Truth Analysis
            gt_summary_list = []
            gt_match_list = []
            gt_match_idx_list = []
            gt_match_idx_conf_list = []
            gt_match_idx_bb_list = []
            for idx in range(len(gt_labels)):
                if idx in gt_matched_idx_dict.keys():
                    gt_summary = "MATCH"
                    match =  gt_matched_idx_dict[idx]
                    match_idx = predicted_labels_conf[match[1]]
                    match_conf = predicted_confidence_conf[match[1]]
                    match_bb = predicted_boxes_conf[match[1]]
                elif idx in gt_mismatch_idx_dict.keys():
                    gt_summary = "MISMATCH"
                    match =  gt_mismatch_idx_dict[idx]
                    match_idx = predicted_labels_conf[match[1]]
                    match_conf = predicted_confidence_conf[match[1]]
                    match_bb = predicted_boxes_conf[match[1]]
                else:
                    gt_summary = "NO"
                    match = ["GT", idx, "-"]
                    match_idx = "-"
                    match_conf = "-"
                    match_bb = "-"
                gt_summary_list.append(gt_summary)
                gt_match_list.append(tuple(match))
                gt_match_idx_list.append(match_idx)
                gt_match_idx_conf_list.append(match_conf)
                gt_match_idx_bb_list.append(match_bb)

            # Prediction Analysis
            prediction_summary_list = []
            prediction_match_list = []
            for idx in range(len(predicted_labels_conf)):
                if idx in predicted_matched_idx_dict.keys():
                    prediction_summary = "MATCH"
                    match = predicted_matched_idx_dict[idx]
                elif idx in predicted_mismatch_idx_dict.keys():
                    prediction_summary = "MISMATCH"
                    match = predicted_mismatch_idx_dict[idx]
                else:
                    prediction_summary = "NO"
                    match = [idx, "P", "-"]
                prediction_summary_list.append(prediction_summary)
                prediction_match_list.append(tuple(match))

            combined_info = {
                    "image_file_name": img_file,
                    "number_of_predictions_conf": number_of_predictions_conf,
                    "predicted_labels_conf": predicted_labels_conf,
                    "predicted_confidence_conf": predicted_confidence_conf,
                    "num_matches": len(match_correct_list),
                    "num_mismatch": len(match_wrong_list),
                    "labels_hit": labels_hit,
                    "pairs_mislabel_gt_prediction": pairs_mislabel_gt_prediction,
                    "gt_match_idx_list": gt_match_idx_list,
                    "gt_match_idx_conf_list": gt_match_idx_conf_list,
                    "gt_match_idx_bb_list": gt_match_idx_bb_list,
                    "gt_match": gt_match_list,
                    "prediction_match": prediction_match_list,
                    "gt_analysis": gt_summary_list,
                    "prediction_analysis": prediction_summary_list        
                }

        combined_info_list.append(combined_info)
    
    df_combined = pd.DataFrame(combined_info_list)

    df_full = pd.merge(df_all, df_combined , how='left', on=["image_file_name"])

    csv_path_combined = f"{csv_save_folder}df_inference_details_nms_{nms_threshold}_conf_{confidence_threshold}_iou_{iou_threshold}.csv"

    df_full.to_csv(csv_path_combined, index=False)
    print ("Dataframe saved as csv to " + csv_path_combined)

    if gt_statistics:
        print("Generating Statistics for Single Ground Truth")        
        csv_path_gt = f"{csv_save_folder}df_gt_details_nms_{nms_threshold}_conf_{confidence_threshold}_iou_{iou_threshold}.csv"
        df_gt_analysis = __get_single_gt_analysis(csv_output=csv_path_gt, df_input=df_full)

        return df_full, df_gt_analysis
    
    else:
        return df_full

def __get_single_gt_analysis(csv_output, df_input=None,csv_input=None):

    if df_input is None:
        df_gt = pd.read_csv(csv_input)

        # Apply literal eval of columns containing information on Ground Truth
        df_gt.gt_labels = df_gt.gt_labels.apply(literal_eval)
        df_gt.gt_boxes = df_gt.gt_boxes.apply(literal_eval)
        df_gt.gt_boxes_int = df_gt.gt_boxes_int.apply(literal_eval)
        df_gt.gt_area_list = df_gt.gt_area_list.apply(literal_eval)
        df_gt.gt_area_type = df_gt.gt_area_type.apply(literal_eval)
        df_gt.truncated_list = df_gt.truncated_list.apply(literal_eval)
        df_gt.occluded_list = df_gt.occluded_list.apply(literal_eval)
        df_gt.gt_match_idx_list = df_gt.gt_match_idx_list.apply(literal_eval)
        df_gt.gt_match_idx_conf_list = df_gt.gt_match_idx_conf_list.apply(literal_eval)
        df_gt.gt_match_idx_bb_list = df_gt.gt_match_idx_bb_list.apply(literal_eval)
        df_gt.gt_match = df_gt.gt_match.apply(literal_eval)
        df_gt.gt_analysis = df_gt.gt_analysis.apply(literal_eval)
    
    else:
        df_gt = df_input
    
    gt_info_list = []
    for _,rows in df_gt.iterrows():
        # print(rows["image_file_name"])
        for idx in range(rows["number_of_gt"]):
            df_gt_image_dict = {
                "GT_Image": rows["image_file_name"],
                "GT_Label": rows["gt_labels"][idx],
                "GT_Boxes": rows["gt_boxes"][idx],
                "GT_Boxes_Int": rows["gt_boxes_int"][idx],
                "GT_Area": rows["gt_area_list"][idx],
                "GT_Area_Type": rows["gt_area_type"][idx],
                "Truncated": rows["truncated_list"][idx],
                "Occluded": rows["occluded_list"][idx],
                "GT_Match": rows["gt_match"][idx],
                "IOU": rows["gt_match"][idx][2],
                "GT_Match_IDX": rows["gt_match_idx_list"][idx],
                "GT_Confidence_IDX": rows["gt_match_idx_conf_list"][idx],
                "GT_Predicted_Boxes_IDX": rows["gt_match_idx_bb_list"][idx],
                "GT_Analysis": rows["gt_analysis"][idx]
                }
            gt_info_list.append(df_gt_image_dict)

    df_final = pd.DataFrame(gt_info_list)
    df_final = df_final.reset_index(drop=True)

    df_final.to_csv(csv_output, index=False)
    print ("Dataframe saved as csv to " + csv_output)

    return df_final

if __name__ == '__main__':
    
    combine_gt_predictions(
        csv_file="/polyaxon-data/workspace/stee/voc_image_annotations_batch123.csv",
        img_folder="/polyaxon-data/workspace/stee/data_batch123",
        xml_folder="/polyaxon-data/workspace/stee/data_batch123/Annotations/",
        names_file="/polyaxon-data/workspace/stee/data_batch123/obj.names",
        model_cfg="cfg/cfg_frcn.ini",
        ckpt_file="/polyaxon-data/workspace/stee/andy/epoch=99-step=61899.ckpt",
        csv_save_folder="/polyaxon-data/workspace/stee/andy/generation/",
        nms_threshold=0.9, 
        confidence_threshold=0.3, 
        iou_threshold=0.4,
        gt_statistics=False)