File size: 4,833 Bytes
26364eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from peekingduck.pipeline.nodes.model import yolo as pkd_yolo
import cv2
from collections import defaultdict
import numpy as np
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

def convert_labels(inference_labels_dict, bbox_labels):
    for k, v in inference_labels_dict.items():
        bbox_labels[bbox_labels == k] = v

    # FutureWarning: elementwise comparison failed; returning scalar, but in the future will perform elementwise comparison
    # throws up this warning because making a change string to int is something that numpy disagrees with (???). 

    return bbox_labels

def process_masks(inference_outputs, inference_labels_dict):

    mask_labels = convert_labels(inference_labels_dict, inference_outputs["bbox_labels"])
    masks  = inference_outputs["masks"]
    scores = inference_outputs['bbox_scores']
    
    processed_output = [[masks[i], scores[i], int(mask_labels[i])] for i in range(len(scores))] 

    return processed_output

def process_bboxes(inference_outputs, inference_labels_dict):

    bbox_labels = inference_outputs["bbox_labels"]
    bbox_labels = convert_labels(inference_labels_dict, bbox_labels)
    bboxes = inference_outputs["bboxes"]
    bbox_scores = inference_outputs["bbox_scores"]
    
    # stack the bbox_scores and bbox_labels
    # hence, array(['score', 'score','score']) and array(['class','class','class'])
    # becomes array([['score','class'], ['score','class'],['score','class']])
    stacked = np.stack((bbox_scores, bbox_labels), axis = 1)

    # concatenate the values of the bbox wih the stacked values above
    # use concatenate here because it is 1xnxm with 1xnxl dimension so it works
    # it's just maths, people!
    concated = np.concatenate((bboxes, stacked), axis = 1)

    return concated.astype(np.float32)

def run_inference(img_matrix, model, inference_labels_dict = {'person': 1, 'bicycle': 2}, task = "det"):
    """Helper function to run per image inference, get bbox, labels and scores and stack them for confusion matrix output

    Args:
        img_matrix (np.array): _description_
        model: _description_
        labels_dict (dict, optional): _description_. Defaults to {'person': 0, 'bicycle': 1}.

    Returns:
        concated (np.array): concatenated inference of n x (bbox (default is x1, y1, x2, y2), score, class)
        img_matrix.shape (np vector): vector with [Height * Weight * Dimension] values
    """
    # print(img_matrix.shape)
    # for img_matrix, it's HxWxD. Need to resize it for the confusion matrix

    # modify this to change the run to your model's inference method eg model(img) in pytorch
    inference_inputs = {"img": img_matrix}
    inference_outputs = model.run(inference_inputs)

    # pkd outputs for segmentation - {'bboxes': [[],[]..,[]], 'bbox_labels':[], 'bbox_scores':[], 'masks':[[[],[],[]]]}

    if task == "seg":
        processed_output = process_masks(inference_outputs, inference_labels_dict)
    
    elif task == "det":
        processed_output = process_bboxes(inference_outputs, inference_labels_dict)

    return processed_output, img_matrix.shape

class Inference:

    def __init__(self, model, cfg_obj):
        
        self.model = model
        self.labels_dict = cfg_obj['error_analysis']['labels_dict']
        self.inference_labels_dict = cfg_obj['error_analysis']['inference_labels_dict']
        self.task = cfg_obj['error_analysis']['task']
        
    def run_inference_path(self, img_path):
        """use if img_path is specified 

        Args:
            img_path (_type_): _description_

        Returns:
            _type_: _description_
        """
        image_orig = cv2.imread(img_path)
        image_orig = cv2.cvtColor(image_orig, cv2.COLOR_BGR2RGB)

        output = run_inference(image_orig, self.model, inference_labels_dict = self.inference_labels_dict, task = self.task)

        return output
    
    def run_inference_byte(self, img_bytes):
        """use if the img_bytes is passed in instead of path

        Args:
            img_bytes (_type_): _description_

        Returns:
            _type_: _description_
        """
        img_decoded = cv2.imdecode(np.frombuffer(img_bytes, np.uint8), -1)
        img_decoded = cv2.cvtColor(img_decoded, cv2.COLOR_BGR2RGB)

        output = run_inference(img_decoded, self.model, labels_dict = self.inference_labels_dict, task = self.task)

        return output

if __name__ == "__main__":
    import yaml
    from src.error_analysis import load_model
    cfg_file = open("cfg/cfg.yml")
    cfg_obj = yaml.load(cfg_file, Loader=yaml.FullLoader)
    img_path = "./data/annotations_trainval2017/coco_person/000000576052.jpg"
    inference_obj = Inference(model = load_model(cfg_obj), cfg_obj = cfg_obj)
    output = inference_obj.run_inference_path(img_path)
    print (output)