error-analysis-cv-segmentations / src /pred_analysis_STEE.py
tappyness1
initial app
26364eb
raw
history blame
25.2 kB
import os
import re
import cv2
import time
import numpy as np
import pandas as pd
import xml.etree.ElementTree as ET
from pathlib import Path
from torchvision import transforms
from configparser import ConfigParser, ExtendedInterpolation
from ast import literal_eval
from src.models.model import Model
from src.models.eval.confusion_matrix import ConfusionMatrix
def generate_inference_from_img_folder(csv_file, model_cfg, img_folder, ckpt_file,
nms_thresh, conf_thresh, device="cuda" ,csv_path=None):
"""[Retrieve the inference information of the test images given a model checkpoint trained]
Parameters
----------
csv_file : [str]
[path of the csv file containing the information of the test images]
model_cfg : [str]
[path of the model config file to use, specific to the checkpoint file]
img_folder : [str]
[folder containing the images]
ckpt_file : [str]
[path of the model checkpoint file to use for model inference]
nms_thresh : [float]
[Non-maximum suppression threshold to use for the model inference, values between 0 to 1]
conf_thresh : [float]
[Confidence threshold to use for the model inference, values between 0 to 1]
device : str, optional
[device to use for inference, option: "cuda" or "cpu"], by default "cuda"
csv_path : [str], optional
[path to save the pandas.DataFrame output as a csv], by default None i.e. csv not generated
Returns
-------
df : [pandas.DataFrame]
[dataframe containing the inference information of the test images]
"""
pl_config = ConfigParser(interpolation=ExtendedInterpolation())
pl_config.read(model_cfg)
model_selected = Model(pl_config)
df_original = pd.read_csv(csv_file)
# Only perform inference on test images with at least 1 ground truth.
df_test = df_original[df_original['remarks_xml'] == 'Available xml file'].reset_index()
df_test = df_test[df_test['set_type'] == 'Test'].reset_index()
img_number = 0
prediction_info_list = []
for _,rows in df_test.iterrows():
img_file = rows["image_file_name"]
img_number += 1
inference_start_time = time.time()
img_file_path = os.path.join(img_folder,img_file)
# Perform inference on image with ckpt file with device either "cuda" or "cpu"
# img_inference = model_selected.inference(device='cpu', img_path=img_file_path, ckpt_path=ckpt_file)
img_inference = model_selected.inference(
device=device, img_path=img_file_path, ckpt_path=ckpt_file, nms_thresh=nms_thresh, conf_thresh=conf_thresh)
# Sieve out inference
predicted_boxes_unsorted = img_inference[0].tolist()
predicted_labels_unsorted = img_inference[1].tolist()
predicted_confidence_unsorted = img_inference[2].tolist()
# print(f"Pre Boxes: {predicted_boxes}")
# print(f"Pre Labels: {predicted_labels}")
# print(f"Pre Labels: {predicted_confidence}")
# Sorting input
predicted_boxes = [x for _,x in sorted(zip(predicted_confidence_unsorted,predicted_boxes_unsorted), reverse=True)]
predicted_labels = [x for _,x in sorted(zip(predicted_confidence_unsorted,predicted_labels_unsorted), reverse=True)]
predicted_confidence = sorted(predicted_confidence_unsorted, reverse=True)
# print(f"Post Boxes: {predicted_boxes}")
# print(f"Post Labels: {predicted_labels}")
# print(f"Post Labels: {predicted_confidence}")
predicted_boxes_int = []
for box in predicted_boxes:
box_int = [round(x) for x in box]
predicted_boxes_int.append(box_int)
# Prepare inputs for confusion matrix
cm_detections_list = []
for prediction in range(len(predicted_boxes)):
detection_list = predicted_boxes[prediction]
detection_list.append(predicted_confidence[prediction])
detection_list.append(predicted_labels[prediction])
cm_detections_list.append(detection_list)
# Re generate predicted boxes
predicted_boxes = [x for _,x in sorted(zip(predicted_confidence_unsorted,predicted_boxes_unsorted), reverse=True)]
inference_time_per_image = round(time.time() - inference_start_time, 2)
if img_number%100 == 0:
print(f'Performing inference on Image {img_number}: {img_file_path}')
print(f'Time taken for image: {inference_time_per_image}')
prediction_info = {
"image_file_path": img_file_path,
"image_file_name": img_file,
"number_of_predictions": len(predicted_boxes),
"predicted_boxes": predicted_boxes,
"predicted_boxes_int": predicted_boxes_int,
"predicted_labels": predicted_labels,
"predicted_confidence": predicted_confidence,
"cm_detections_list": cm_detections_list,
"inference_time": inference_time_per_image
}
prediction_info_list.append(prediction_info)
df = pd.DataFrame(prediction_info_list)
if csv_path is not None:
df.to_csv(csv_path, index=False)
print ("Dataframe saved as csv to " + csv_path)
return df
def get_gt_from_img_folder(csv_file, img_folder, xml_folder, names_file, map_start_index=1, csv_path=None):
"""[Retrieve the ground truth information of the test images]
Parameters
----------
csv_file : [str]
[path of the csv file containing the information of the test images]
img_folder : [str]
[folder containing the images]
xml_folder : [str]
[folder containing the xml files associated with the images]
names_file : [str]
[names file containing the class labels of interest]
map_start_index : int, optional
[attach a number to each class label listed in names file, starting from number given by map_start_index], by default 1
csv_path : [str], optional
[path to save the pandas.DataFrame output as a csv], by default None i.e. csv not generated
Returns
-------
df : [pandas.DataFrame]
[dataframe containing the ground truth information of the test images]
"""
df_original = pd.read_csv(csv_file)
# Only perform inference on test images with at least 1 ground truth.
df_test = df_original[df_original['remarks_xml'] == 'Available xml file'].reset_index()
df_test = df_test[df_test['set_type'] == 'Test'].reset_index()
# Create a dictionary to map numeric class as class labels
class_labels_dict = {}
with open(names_file) as f:
for index,line in enumerate(f):
idx = index + map_start_index
class_labels = line.splitlines()[0]
class_labels_dict[class_labels] = idx
gt_info_list = []
# for img_file in os.listdir(img_folder):
# if re.search(".jpg", img_file):
for _,rows in df_test.iterrows():
img_file = rows["image_file_name"]
# file_stem = Path(img_file_path).stem
# Get img tensor
img_file_path = os.path.join(img_folder,img_file)
img = cv2.imread(filename = img_file_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# Get associated xml file
file_stem = Path(img_file_path).stem
xml_file_path = xml_folder + file_stem + ".xml"
tree = ET.parse(xml_file_path)
root = tree.getroot()
for image_detail in root.findall('size'):
image_width = float(image_detail.find('width').text)
image_height = float(image_detail.find('height').text)
class_index_list = []
bb_list = []
truncated_list = []
occluded_list = []
for item in root.findall('object'):
if item.find('truncated') is not None:
truncated = int(item.find('truncated').text)
else:
truncated = 0
if item.find('occluded').text is not None:
occluded = int(item.find('occluded').text)
else:
occluded = 0
for bb_details in item.findall('bndbox'):
class_label = item.find('name').text
class_index = class_labels_dict[class_label]
xmin = float(bb_details.find('xmin').text)
ymin = float(bb_details.find('ymin').text)
xmax = float(bb_details.find('xmax').text)
ymax = float(bb_details.find('ymax').text)
class_index_list.append(class_index)
bb_list.append([xmin,ymin,xmax,ymax])
truncated_list.append(truncated)
occluded_list.append(occluded)
transform = A.Compose([
A.Resize(608,608),
ToTensor()
],
bbox_params=A.BboxParams(format='pascal_voc',
label_fields=['class_labels']),
)
augmented = transform(image=img, bboxes = bb_list, class_labels = class_index_list)
# img comes out as int, need to change to float.
img = augmented['image'].float()
gt_boxes = augmented['bboxes']
gt_boxes_list = [list(box) for box in gt_boxes]
gt_labels = augmented['class_labels']
gt_boxes_int = []
for box in gt_boxes:
box_int = [round(x) for x in box]
gt_boxes_int.append(box_int)
cm_gt_list = []
for gt in range(len(gt_boxes)):
gt_list = [gt_labels[gt]]
gt_list.extend(gt_boxes[gt])
cm_gt_list.append(gt_list)
# Calculate and Group by Size of Ground Truth
gt_area_list = []
gt_area_type = []
for gt_box in gt_boxes:
gt_area = (gt_box[3] - gt_box[1]) * (gt_box[2] - gt_box[0])
gt_area_list.append(gt_area)
if gt_area < 32*32:
area_type = "S"
gt_area_type.append(area_type)
elif gt_area < 96*96:
area_type = "M"
gt_area_type.append(area_type)
else:
area_type = "L"
gt_area_type.append(area_type)
gt_info = {
"image_file_path": img_file_path,
"image_file_name": img_file,
"image_width": image_width,
"image_height": image_height,
"number_of_gt": len(gt_boxes_list),
"gt_labels": gt_labels,
"gt_boxes": gt_boxes_list,
"gt_boxes_int": gt_boxes_int,
"cm_gt_list": cm_gt_list,
"gt_area_list": gt_area_list,
"gt_area_type": gt_area_type,
"truncated_list": truncated_list,
"occluded_list": occluded_list
}
gt_info_list.append(gt_info)
df = pd.DataFrame(gt_info_list)
if csv_path is not None:
df.to_csv(csv_path, index=False)
print ("Dataframe saved as csv to " + csv_path)
return df
def combine_gt_predictions(csv_file, img_folder, xml_folder, names_file, model_cfg, ckpt_file, csv_save_folder,
device="cuda", nms_threshold=0.1, confidence_threshold=0.7, iou_threshold=0.4, gt_statistics=True):
"""[Retrieve the combined inference and ground truth information of the test images]
Parameters
----------
csv_file : [str]
[path of the csv file containing the information of the test images]
img_folder : [str]
[folder containing the images]
xml_folder : [str]
[folder containing the xml files associated with the images]
names_file : [str]
[names file containing the class labels of interest]
model_cfg : [str]
[path of the model config file to use, specific to the checkpoint file]
ckpt_file : [str]
[path of the model checkpoint file to use for model inference]
csv_save_folder : [str]
[folder to save the generated csv files]
device : str, optional
[device to use for inference, option: "cuda" or "cpu"], by default "cuda"
nms_threshold : float, optional
[Non-maximum suppression threshold to use for the model inference, values between 0 to 1], by default 0.1
confidence_threshold : float, optional
[Confidence threshold to use for the model inference, values between 0 to 1], by default 0.7
iou_threshold : float, optional
[IOU threshold to use for identifying true positives from the predictions and ground truth], by default 0.4
gt_statistics : bool, optional
[option to generate the df_gt_analysis], by default True
Returns
-------
df_full : [pandas.DataFrame]
[dataframe containing the combined inference and ground truth information of the test images by image]
df_gt_analysis : pandas.DataFrame, optional
[dataframe containing the combined inference and ground truth information of the test images by ground truth]
"""
print(f"NMS Threshold: {nms_threshold}")
print(f"Confidence Threshold: {confidence_threshold}")
print(f"IOU Threshold: {iou_threshold}")
df_gt = get_gt_from_img_folder(
csv_file, img_folder, xml_folder, names_file)
print("Successful Generation of Ground Truth Information")
df_predictions = generate_inference_from_img_folder(
csv_file, model_cfg, img_folder, ckpt_file,
nms_thresh=nms_threshold, conf_thresh=confidence_threshold, device=device)
print("Successful Generation of Inference")
df_all = pd.merge(df_gt, df_predictions, how='left', on=["image_file_path", "image_file_name"])
print("Successful Merging")
class_labels_list = []
with open(names_file) as f:
for index,line in enumerate(f):
class_labels = line.splitlines()[0]
class_labels_list.append(class_labels)
combined_info_list = []
for _,rows in df_all.iterrows():
img_file = rows["image_file_name"]
predicted_boxes = rows["predicted_boxes"]
predicted_labels = rows["predicted_labels"]
predicted_confidence = rows["predicted_confidence"]
gt_boxes = rows["gt_boxes"]
gt_labels = rows["gt_labels"]
cm_gt_list = rows["cm_gt_list"]
cm_detections_list = rows["cm_detections_list"]
if rows["number_of_predictions"] == 0:
# Ground Truth Analysis
gt_summary_list = []
gt_match_list = []
gt_match_idx_list = []
gt_match_idx_conf_list = []
gt_match_idx_bb_list = []
for idx in range(len(gt_labels)):
gt_summary = "NO"
match = ["GT", idx, "-"]
match_idx = "-"
match_bb = "-"
gt_summary_list.append(gt_summary)
gt_match_list.append(tuple(match))
gt_match_idx_list.append(match_idx)
gt_match_idx_conf_list.append(match_idx)
gt_match_idx_bb_list.append(match_bb)
combined_info = {
"image_file_name": img_file,
"number_of_predictions_conf": [],
"predicted_labels_conf": [],
"predicted_confidence_conf": [],
"num_matches": [],
"num_mismatch": [],
"labels_hit": [],
"pairs_mislabel_gt_prediction": [],
"gt_match_idx_list": gt_match_idx_list,
"gt_match_idx_conf_list": gt_match_idx_conf_list,
"gt_match_idx_bb_list": gt_match_idx_bb_list,
"prediction_match": [],
"gt_analysis": gt_summary_list,
"prediction_analysis": [],
"gt_match": gt_match_list
}
else:
# Generate Confusion Matrix with their corresponding matches
CM = ConfusionMatrix(
num_classes=len(class_labels_list)+1,
CONF_THRESHOLD = confidence_threshold,
IOU_THRESHOLD = iou_threshold)
matching_boxes = CM.process_batch(
detections=np.asarray(cm_detections_list),
labels=np.asarray(cm_gt_list),
return_matches=True)
predicted_confidence_count = len([confidence for confidence in predicted_confidence if confidence > confidence_threshold])
predicted_confidence_round = [round(confidence, 4) for confidence in predicted_confidence]
predicted_confidence_conf = predicted_confidence_round[:predicted_confidence_count]
predicted_labels_conf = predicted_labels[:predicted_confidence_count]
predicted_boxes_conf = predicted_boxes[:predicted_confidence_count]
number_of_predictions_conf = len(predicted_labels_conf)
match_correct_list = []
match_wrong_list = []
gt_matched_idx_dict = {}
predicted_matched_idx_dict = {}
gt_mismatch_idx_dict = {}
predicted_mismatch_idx_dict = {}
labels_hit = []
pairs_mislabel_gt_prediction = []
for match in matching_boxes:
gt_idx = int(match[0])
predicted_idx = int(match[1])
iou = round(match[2], 4)
match = [gt_idx, predicted_idx, iou]
if gt_labels[gt_idx] == predicted_labels_conf[predicted_idx]:
match_correct_list.append(match)
gt_matched_idx_dict[gt_idx] = match
predicted_matched_idx_dict[predicted_idx] = match
labels_hit.append(gt_labels[gt_idx])
else:
match_wrong_list.append(match)
gt_mismatch_idx_dict[gt_idx] = match
predicted_mismatch_idx_dict[predicted_idx] = match
pairs_mislabel_gt_prediction.append(
[gt_labels[gt_idx],predicted_labels_conf[predicted_idx]])
# Ground Truth Analysis
gt_summary_list = []
gt_match_list = []
gt_match_idx_list = []
gt_match_idx_conf_list = []
gt_match_idx_bb_list = []
for idx in range(len(gt_labels)):
if idx in gt_matched_idx_dict.keys():
gt_summary = "MATCH"
match = gt_matched_idx_dict[idx]
match_idx = predicted_labels_conf[match[1]]
match_conf = predicted_confidence_conf[match[1]]
match_bb = predicted_boxes_conf[match[1]]
elif idx in gt_mismatch_idx_dict.keys():
gt_summary = "MISMATCH"
match = gt_mismatch_idx_dict[idx]
match_idx = predicted_labels_conf[match[1]]
match_conf = predicted_confidence_conf[match[1]]
match_bb = predicted_boxes_conf[match[1]]
else:
gt_summary = "NO"
match = ["GT", idx, "-"]
match_idx = "-"
match_conf = "-"
match_bb = "-"
gt_summary_list.append(gt_summary)
gt_match_list.append(tuple(match))
gt_match_idx_list.append(match_idx)
gt_match_idx_conf_list.append(match_conf)
gt_match_idx_bb_list.append(match_bb)
# Prediction Analysis
prediction_summary_list = []
prediction_match_list = []
for idx in range(len(predicted_labels_conf)):
if idx in predicted_matched_idx_dict.keys():
prediction_summary = "MATCH"
match = predicted_matched_idx_dict[idx]
elif idx in predicted_mismatch_idx_dict.keys():
prediction_summary = "MISMATCH"
match = predicted_mismatch_idx_dict[idx]
else:
prediction_summary = "NO"
match = [idx, "P", "-"]
prediction_summary_list.append(prediction_summary)
prediction_match_list.append(tuple(match))
combined_info = {
"image_file_name": img_file,
"number_of_predictions_conf": number_of_predictions_conf,
"predicted_labels_conf": predicted_labels_conf,
"predicted_confidence_conf": predicted_confidence_conf,
"num_matches": len(match_correct_list),
"num_mismatch": len(match_wrong_list),
"labels_hit": labels_hit,
"pairs_mislabel_gt_prediction": pairs_mislabel_gt_prediction,
"gt_match_idx_list": gt_match_idx_list,
"gt_match_idx_conf_list": gt_match_idx_conf_list,
"gt_match_idx_bb_list": gt_match_idx_bb_list,
"gt_match": gt_match_list,
"prediction_match": prediction_match_list,
"gt_analysis": gt_summary_list,
"prediction_analysis": prediction_summary_list
}
combined_info_list.append(combined_info)
df_combined = pd.DataFrame(combined_info_list)
df_full = pd.merge(df_all, df_combined , how='left', on=["image_file_name"])
csv_path_combined = f"{csv_save_folder}df_inference_details_nms_{nms_threshold}_conf_{confidence_threshold}_iou_{iou_threshold}.csv"
df_full.to_csv(csv_path_combined, index=False)
print ("Dataframe saved as csv to " + csv_path_combined)
if gt_statistics:
print("Generating Statistics for Single Ground Truth")
csv_path_gt = f"{csv_save_folder}df_gt_details_nms_{nms_threshold}_conf_{confidence_threshold}_iou_{iou_threshold}.csv"
df_gt_analysis = __get_single_gt_analysis(csv_output=csv_path_gt, df_input=df_full)
return df_full, df_gt_analysis
else:
return df_full
def __get_single_gt_analysis(csv_output, df_input=None,csv_input=None):
if df_input is None:
df_gt = pd.read_csv(csv_input)
# Apply literal eval of columns containing information on Ground Truth
df_gt.gt_labels = df_gt.gt_labels.apply(literal_eval)
df_gt.gt_boxes = df_gt.gt_boxes.apply(literal_eval)
df_gt.gt_boxes_int = df_gt.gt_boxes_int.apply(literal_eval)
df_gt.gt_area_list = df_gt.gt_area_list.apply(literal_eval)
df_gt.gt_area_type = df_gt.gt_area_type.apply(literal_eval)
df_gt.truncated_list = df_gt.truncated_list.apply(literal_eval)
df_gt.occluded_list = df_gt.occluded_list.apply(literal_eval)
df_gt.gt_match_idx_list = df_gt.gt_match_idx_list.apply(literal_eval)
df_gt.gt_match_idx_conf_list = df_gt.gt_match_idx_conf_list.apply(literal_eval)
df_gt.gt_match_idx_bb_list = df_gt.gt_match_idx_bb_list.apply(literal_eval)
df_gt.gt_match = df_gt.gt_match.apply(literal_eval)
df_gt.gt_analysis = df_gt.gt_analysis.apply(literal_eval)
else:
df_gt = df_input
gt_info_list = []
for _,rows in df_gt.iterrows():
# print(rows["image_file_name"])
for idx in range(rows["number_of_gt"]):
df_gt_image_dict = {
"GT_Image": rows["image_file_name"],
"GT_Label": rows["gt_labels"][idx],
"GT_Boxes": rows["gt_boxes"][idx],
"GT_Boxes_Int": rows["gt_boxes_int"][idx],
"GT_Area": rows["gt_area_list"][idx],
"GT_Area_Type": rows["gt_area_type"][idx],
"Truncated": rows["truncated_list"][idx],
"Occluded": rows["occluded_list"][idx],
"GT_Match": rows["gt_match"][idx],
"IOU": rows["gt_match"][idx][2],
"GT_Match_IDX": rows["gt_match_idx_list"][idx],
"GT_Confidence_IDX": rows["gt_match_idx_conf_list"][idx],
"GT_Predicted_Boxes_IDX": rows["gt_match_idx_bb_list"][idx],
"GT_Analysis": rows["gt_analysis"][idx]
}
gt_info_list.append(df_gt_image_dict)
df_final = pd.DataFrame(gt_info_list)
df_final = df_final.reset_index(drop=True)
df_final.to_csv(csv_output, index=False)
print ("Dataframe saved as csv to " + csv_output)
return df_final
if __name__ == '__main__':
combine_gt_predictions(
csv_file="/polyaxon-data/workspace/stee/voc_image_annotations_batch123.csv",
img_folder="/polyaxon-data/workspace/stee/data_batch123",
xml_folder="/polyaxon-data/workspace/stee/data_batch123/Annotations/",
names_file="/polyaxon-data/workspace/stee/data_batch123/obj.names",
model_cfg="cfg/cfg_frcn.ini",
ckpt_file="/polyaxon-data/workspace/stee/andy/epoch=99-step=61899.ckpt",
csv_save_folder="/polyaxon-data/workspace/stee/andy/generation/",
nms_threshold=0.9,
confidence_threshold=0.3,
iou_threshold=0.4,
gt_statistics=False)