|
from peekingduck.pipeline.nodes.model import yolo as pkd_yolo |
|
from peekingduck.pipeline.nodes.model import yolact_edge as pkd_yolact |
|
from src.data_ingestion.data_ingestion import AnnotsGTGetter |
|
from src.inference import Inference |
|
from src.confusion_matrix import ConfusionMatrix |
|
import yaml |
|
from itertools import product |
|
import pandas as pd |
|
import numpy as np |
|
|
|
def transform_gt_bbox_format(ground_truth, img_size, format = "coco"): |
|
"""transforms ground truth bbox format to pascal voc for confusion matrix |
|
|
|
Args: |
|
ground_truth (_type_): nx5 numpy array, if coco - n x [class, x, y, w, h], if yolo - n x [class, x-mid, y-mid, w, h] |
|
img_size (_type_): [Height * Weight * Dimension] values vector |
|
format (str, optional): . Defaults to "coco". |
|
|
|
Returns: |
|
_type_: ground_truth. Transformed ground truth to pascal voc format |
|
""" |
|
if format == "coco": |
|
ground_truth[:, 3] = (ground_truth[:, 1] + ground_truth[:, 3])/img_size[1] |
|
ground_truth[:, 1] = (ground_truth[:, 1]) /img_size[1] |
|
ground_truth[:, 4] = (ground_truth[:, 2] + ground_truth[:, 4])/img_size[0] |
|
ground_truth[:, 2] = (ground_truth[:, 2]) /img_size[0] |
|
|
|
return ground_truth |
|
|
|
def load_model(cfg_obj, iou_threshold, score_threshold): |
|
|
|
pkd = cfg_obj['error_analysis']['peekingduck'] |
|
task = cfg_obj['error_analysis']['task'] |
|
|
|
if pkd: |
|
|
|
pkd_model = cfg_obj['pkd']['model'] |
|
|
|
|
|
|
|
if pkd_model == "yolo": |
|
yolo_ver = cfg_obj['pkd']['yolo_ver'] |
|
model = pkd_yolo.Node(model_type = yolo_ver, |
|
detect= list(cfg_obj['error_analysis']['inference_labels_dict'].keys()), |
|
iou_threshold = iou_threshold, |
|
score_threshold = score_threshold) |
|
|
|
if pkd_model == "yolact_edge": |
|
yolact_ver = cfg_obj['pkd']['yolact_ver'] |
|
model = pkd_yolact.Node(model_type = yolact_ver, |
|
detect= list(cfg_obj['error_analysis']['inference_labels_dict'].values()), |
|
iou_threshold = iou_threshold, |
|
score_threshold = score_threshold) |
|
|
|
else: |
|
|
|
|
|
|
|
|
|
pass |
|
|
|
return model |
|
|
|
class ErrorAnalysis: |
|
|
|
def __init__(self, cfg_path = 'cfg/cfg.yml'): |
|
|
|
cfg_file = open(cfg_path) |
|
self.cfg_obj = yaml.load(cfg_file, Loader=yaml.FullLoader) |
|
|
|
self.iou_thresh = self.cfg_obj['error_analysis']['iou_thresholds'] |
|
self.conf_thresh = self.cfg_obj['error_analysis']['conf_thresholds'] |
|
self.inference_folder = self.cfg_obj['dataset']['img_folder_path'] |
|
self.task = self.cfg_obj['error_analysis']['task'] |
|
base_iou_threshold = self.cfg_obj['visual_tool']['iou_threshold'] |
|
base_score_threshold = self.cfg_obj['visual_tool']['conf_threshold'] |
|
|
|
self.cm_results = [] |
|
|
|
|
|
self.model = load_model(self.cfg_obj, base_iou_threshold, base_score_threshold) |
|
|
|
def generate_inference(self, img_fname = "000000576052.jpg"): |
|
"""Run inference on img based on the image file name. Path to the folder is determined by cfg |
|
|
|
Args: |
|
img_fname (str, optional): _description_. Defaults to "000000576052.jpg". |
|
|
|
Returns: |
|
ndarray, tuple: if task is 'det': ndarray - n x [x1, y1, x2, y2, score, class], (H, W, D) |
|
ndarray, tuple: if task is 'seg': list - n x [[array of binary mask], score, class], (H, W, D) |
|
""" |
|
|
|
inference_obj = Inference(self.model, self.cfg_obj) |
|
img_path = f"{self.inference_folder}{img_fname}" |
|
inference_outputs = inference_obj.run_inference_path(img_path) |
|
|
|
return inference_outputs |
|
|
|
def get_annots(self): |
|
"""get GT annotations from dataset |
|
""" |
|
|
|
annots_obj = AnnotsGTGetter(cfg_obj = self.cfg_obj) |
|
self.gt_dict = annots_obj.get_gt_annots() |
|
|
|
def generate_conf_matrix(self,iou_threshold = 0.5, conf_threshold = 0.2): |
|
"""generate the confusion matrix by running inference on each image |
|
""" |
|
|
|
num_classes = len(list(self.cfg_obj['error_analysis']['labels_dict'].keys())) |
|
ground_truth_format = self.cfg_obj["error_analysis"]["ground_truth_format"] |
|
idx_base = self.cfg_obj["error_analysis"]["idx_base"] |
|
|
|
|
|
|
|
|
|
cm = ConfusionMatrix(num_classes=num_classes, CONF_THRESHOLD = conf_threshold, IOU_THRESHOLD=iou_threshold) |
|
|
|
for fname in list(self.gt_dict.keys()): |
|
|
|
inference_output, img_size = self.generate_inference(fname) |
|
ground_truth = self.gt_dict[fname].copy() |
|
|
|
if self.task == "det": |
|
|
|
|
|
inference_output[:, -1] -= idx_base |
|
|
|
ground_truth[:, 0] -= idx_base |
|
|
|
|
|
|
|
ground_truth = transform_gt_bbox_format(ground_truth=ground_truth, img_size=img_size, format = ground_truth_format) |
|
|
|
else: |
|
|
|
ground_truth = [[gt[0] - idx_base, gt[1]] for gt in ground_truth] |
|
|
|
cm.process_batch(inference_output, ground_truth, task = self.task) |
|
|
|
cm.get_PR() |
|
|
|
return cm.matrix, cm.precision, cm.recall |
|
|
|
def generate_conf_matrices(self, print_matrix = True): |
|
"""generates the confidence matrices |
|
""" |
|
|
|
|
|
combinations = list(product(self.iou_thresh, self.conf_thresh)) |
|
|
|
comb_cms = {} |
|
for comb in combinations: |
|
|
|
self.model = load_model(self.cfg_obj, iou_threshold=comb[0], score_threshold=comb[1]) |
|
returned_matrix, precision, recall = self.generate_conf_matrix(iou_threshold = comb[0], conf_threshold = comb[1]) |
|
|
|
|
|
|
|
comb_cms[f"IOU: {comb[0]}, Conf: {comb[1]}"] = returned_matrix |
|
self.cm_results.append([comb[0], comb[1], precision, recall]) |
|
|
|
if print_matrix: |
|
for k, v in comb_cms.items(): |
|
print (k) |
|
print (v) |
|
|
|
def proc_pr_table(self): |
|
|
|
self.cm_table = pd.DataFrame(self.cm_results, columns = ['IOU_Threshold', 'Score Threshold', 'Precision', 'Recall']) |
|
|
|
print (self.cm_table) |
|
|
|
|
|
if __name__ == "__main__": |
|
ea_games = ErrorAnalysis() |
|
|
|
ea_games.get_annots() |
|
ea_games.generate_conf_matrices() |
|
|
|
|