tappyness1 commited on
Commit
264e65b
·
1 Parent(s): a1027a2

default to side-by-side

Browse files
Files changed (2) hide show
  1. src/pred_analysis_STEE.py +0 -595
  2. src/st_image_tools.py +2 -2
src/pred_analysis_STEE.py DELETED
@@ -1,595 +0,0 @@
1
- import os
2
- import re
3
- import cv2
4
- import time
5
-
6
- import numpy as np
7
- import pandas as pd
8
- import xml.etree.ElementTree as ET
9
-
10
- from pathlib import Path
11
- from torchvision import transforms
12
- from configparser import ConfigParser, ExtendedInterpolation
13
- from ast import literal_eval
14
-
15
- from src.models.model import Model
16
- from src.models.eval.confusion_matrix import ConfusionMatrix
17
-
18
-
19
- def generate_inference_from_img_folder(csv_file, model_cfg, img_folder, ckpt_file,
20
- nms_thresh, conf_thresh, device="cuda" ,csv_path=None):
21
- """[Retrieve the inference information of the test images given a model checkpoint trained]
22
-
23
- Parameters
24
- ----------
25
- csv_file : [str]
26
- [path of the csv file containing the information of the test images]
27
- model_cfg : [str]
28
- [path of the model config file to use, specific to the checkpoint file]
29
- img_folder : [str]
30
- [folder containing the images]
31
- ckpt_file : [str]
32
- [path of the model checkpoint file to use for model inference]
33
- nms_thresh : [float]
34
- [Non-maximum suppression threshold to use for the model inference, values between 0 to 1]
35
- conf_thresh : [float]
36
- [Confidence threshold to use for the model inference, values between 0 to 1]
37
- device : str, optional
38
- [device to use for inference, option: "cuda" or "cpu"], by default "cuda"
39
- csv_path : [str], optional
40
- [path to save the pandas.DataFrame output as a csv], by default None i.e. csv not generated
41
-
42
- Returns
43
- -------
44
- df : [pandas.DataFrame]
45
- [dataframe containing the inference information of the test images]
46
- """
47
-
48
- pl_config = ConfigParser(interpolation=ExtendedInterpolation())
49
- pl_config.read(model_cfg)
50
-
51
- model_selected = Model(pl_config)
52
-
53
- df_original = pd.read_csv(csv_file)
54
- # Only perform inference on test images with at least 1 ground truth.
55
- df_test = df_original[df_original['remarks_xml'] == 'Available xml file'].reset_index()
56
- df_test = df_test[df_test['set_type'] == 'Test'].reset_index()
57
-
58
- img_number = 0
59
- prediction_info_list = []
60
- for _,rows in df_test.iterrows():
61
- img_file = rows["image_file_name"]
62
- img_number += 1
63
- inference_start_time = time.time()
64
- img_file_path = os.path.join(img_folder,img_file)
65
-
66
- # Perform inference on image with ckpt file with device either "cuda" or "cpu"
67
- # img_inference = model_selected.inference(device='cpu', img_path=img_file_path, ckpt_path=ckpt_file)
68
- img_inference = model_selected.inference(
69
- device=device, img_path=img_file_path, ckpt_path=ckpt_file, nms_thresh=nms_thresh, conf_thresh=conf_thresh)
70
-
71
- # Sieve out inference
72
- predicted_boxes_unsorted = img_inference[0].tolist()
73
- predicted_labels_unsorted = img_inference[1].tolist()
74
- predicted_confidence_unsorted = img_inference[2].tolist()
75
-
76
- # print(f"Pre Boxes: {predicted_boxes}")
77
- # print(f"Pre Labels: {predicted_labels}")
78
- # print(f"Pre Labels: {predicted_confidence}")
79
-
80
- # Sorting input
81
- predicted_boxes = [x for _,x in sorted(zip(predicted_confidence_unsorted,predicted_boxes_unsorted), reverse=True)]
82
- predicted_labels = [x for _,x in sorted(zip(predicted_confidence_unsorted,predicted_labels_unsorted), reverse=True)]
83
- predicted_confidence = sorted(predicted_confidence_unsorted, reverse=True)
84
-
85
- # print(f"Post Boxes: {predicted_boxes}")
86
- # print(f"Post Labels: {predicted_labels}")
87
- # print(f"Post Labels: {predicted_confidence}")
88
-
89
- predicted_boxes_int = []
90
- for box in predicted_boxes:
91
- box_int = [round(x) for x in box]
92
- predicted_boxes_int.append(box_int)
93
-
94
- # Prepare inputs for confusion matrix
95
- cm_detections_list = []
96
- for prediction in range(len(predicted_boxes)):
97
- detection_list = predicted_boxes[prediction]
98
- detection_list.append(predicted_confidence[prediction])
99
- detection_list.append(predicted_labels[prediction])
100
- cm_detections_list.append(detection_list)
101
-
102
- # Re generate predicted boxes
103
- predicted_boxes = [x for _,x in sorted(zip(predicted_confidence_unsorted,predicted_boxes_unsorted), reverse=True)]
104
-
105
- inference_time_per_image = round(time.time() - inference_start_time, 2)
106
- if img_number%100 == 0:
107
- print(f'Performing inference on Image {img_number}: {img_file_path}')
108
- print(f'Time taken for image: {inference_time_per_image}')
109
-
110
- prediction_info = {
111
- "image_file_path": img_file_path,
112
- "image_file_name": img_file,
113
- "number_of_predictions": len(predicted_boxes),
114
- "predicted_boxes": predicted_boxes,
115
- "predicted_boxes_int": predicted_boxes_int,
116
- "predicted_labels": predicted_labels,
117
- "predicted_confidence": predicted_confidence,
118
- "cm_detections_list": cm_detections_list,
119
- "inference_time": inference_time_per_image
120
- }
121
- prediction_info_list.append(prediction_info)
122
-
123
- df = pd.DataFrame(prediction_info_list)
124
-
125
- if csv_path is not None:
126
- df.to_csv(csv_path, index=False)
127
- print ("Dataframe saved as csv to " + csv_path)
128
-
129
- return df
130
-
131
- def get_gt_from_img_folder(csv_file, img_folder, xml_folder, names_file, map_start_index=1, csv_path=None):
132
- """[Retrieve the ground truth information of the test images]
133
-
134
- Parameters
135
- ----------
136
- csv_file : [str]
137
- [path of the csv file containing the information of the test images]
138
- img_folder : [str]
139
- [folder containing the images]
140
- xml_folder : [str]
141
- [folder containing the xml files associated with the images]
142
- names_file : [str]
143
- [names file containing the class labels of interest]
144
- map_start_index : int, optional
145
- [attach a number to each class label listed in names file, starting from number given by map_start_index], by default 1
146
- csv_path : [str], optional
147
- [path to save the pandas.DataFrame output as a csv], by default None i.e. csv not generated
148
-
149
- Returns
150
- -------
151
- df : [pandas.DataFrame]
152
- [dataframe containing the ground truth information of the test images]
153
- """
154
-
155
- df_original = pd.read_csv(csv_file)
156
-
157
- # Only perform inference on test images with at least 1 ground truth.
158
- df_test = df_original[df_original['remarks_xml'] == 'Available xml file'].reset_index()
159
- df_test = df_test[df_test['set_type'] == 'Test'].reset_index()
160
-
161
- # Create a dictionary to map numeric class as class labels
162
- class_labels_dict = {}
163
- with open(names_file) as f:
164
- for index,line in enumerate(f):
165
- idx = index + map_start_index
166
- class_labels = line.splitlines()[0]
167
- class_labels_dict[class_labels] = idx
168
-
169
- gt_info_list = []
170
- # for img_file in os.listdir(img_folder):
171
- # if re.search(".jpg", img_file):
172
- for _,rows in df_test.iterrows():
173
- img_file = rows["image_file_name"]
174
- # file_stem = Path(img_file_path).stem
175
-
176
- # Get img tensor
177
- img_file_path = os.path.join(img_folder,img_file)
178
- img = cv2.imread(filename = img_file_path)
179
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
180
-
181
- # Get associated xml file
182
- file_stem = Path(img_file_path).stem
183
- xml_file_path = xml_folder + file_stem + ".xml"
184
-
185
- tree = ET.parse(xml_file_path)
186
- root = tree.getroot()
187
-
188
- for image_detail in root.findall('size'):
189
- image_width = float(image_detail.find('width').text)
190
- image_height = float(image_detail.find('height').text)
191
-
192
- class_index_list = []
193
- bb_list = []
194
- truncated_list = []
195
- occluded_list = []
196
- for item in root.findall('object'):
197
- if item.find('truncated') is not None:
198
- truncated = int(item.find('truncated').text)
199
- else:
200
- truncated = 0
201
-
202
- if item.find('occluded').text is not None:
203
- occluded = int(item.find('occluded').text)
204
- else:
205
- occluded = 0
206
-
207
- for bb_details in item.findall('bndbox'):
208
- class_label = item.find('name').text
209
- class_index = class_labels_dict[class_label]
210
- xmin = float(bb_details.find('xmin').text)
211
- ymin = float(bb_details.find('ymin').text)
212
- xmax = float(bb_details.find('xmax').text)
213
- ymax = float(bb_details.find('ymax').text)
214
-
215
- class_index_list.append(class_index)
216
- bb_list.append([xmin,ymin,xmax,ymax])
217
- truncated_list.append(truncated)
218
- occluded_list.append(occluded)
219
-
220
- transform = A.Compose([
221
- A.Resize(608,608),
222
- ToTensor()
223
- ],
224
- bbox_params=A.BboxParams(format='pascal_voc',
225
- label_fields=['class_labels']),
226
- )
227
-
228
- augmented = transform(image=img, bboxes = bb_list, class_labels = class_index_list)
229
- # img comes out as int, need to change to float.
230
- img = augmented['image'].float()
231
- gt_boxes = augmented['bboxes']
232
- gt_boxes_list = [list(box) for box in gt_boxes]
233
- gt_labels = augmented['class_labels']
234
-
235
- gt_boxes_int = []
236
- for box in gt_boxes:
237
- box_int = [round(x) for x in box]
238
- gt_boxes_int.append(box_int)
239
-
240
- cm_gt_list = []
241
- for gt in range(len(gt_boxes)):
242
- gt_list = [gt_labels[gt]]
243
- gt_list.extend(gt_boxes[gt])
244
- cm_gt_list.append(gt_list)
245
-
246
- # Calculate and Group by Size of Ground Truth
247
- gt_area_list = []
248
- gt_area_type = []
249
- for gt_box in gt_boxes:
250
- gt_area = (gt_box[3] - gt_box[1]) * (gt_box[2] - gt_box[0])
251
- gt_area_list.append(gt_area)
252
-
253
- if gt_area < 32*32:
254
- area_type = "S"
255
- gt_area_type.append(area_type)
256
- elif gt_area < 96*96:
257
- area_type = "M"
258
- gt_area_type.append(area_type)
259
- else:
260
- area_type = "L"
261
- gt_area_type.append(area_type)
262
-
263
- gt_info = {
264
- "image_file_path": img_file_path,
265
- "image_file_name": img_file,
266
- "image_width": image_width,
267
- "image_height": image_height,
268
- "number_of_gt": len(gt_boxes_list),
269
- "gt_labels": gt_labels,
270
- "gt_boxes": gt_boxes_list,
271
- "gt_boxes_int": gt_boxes_int,
272
- "cm_gt_list": cm_gt_list,
273
- "gt_area_list": gt_area_list,
274
- "gt_area_type": gt_area_type,
275
- "truncated_list": truncated_list,
276
- "occluded_list": occluded_list
277
- }
278
- gt_info_list.append(gt_info)
279
-
280
- df = pd.DataFrame(gt_info_list)
281
-
282
- if csv_path is not None:
283
- df.to_csv(csv_path, index=False)
284
- print ("Dataframe saved as csv to " + csv_path)
285
-
286
- return df
287
-
288
- def combine_gt_predictions(csv_file, img_folder, xml_folder, names_file, model_cfg, ckpt_file, csv_save_folder,
289
- device="cuda", nms_threshold=0.1, confidence_threshold=0.7, iou_threshold=0.4, gt_statistics=True):
290
- """[Retrieve the combined inference and ground truth information of the test images]
291
-
292
- Parameters
293
- ----------
294
- csv_file : [str]
295
- [path of the csv file containing the information of the test images]
296
- img_folder : [str]
297
- [folder containing the images]
298
- xml_folder : [str]
299
- [folder containing the xml files associated with the images]
300
- names_file : [str]
301
- [names file containing the class labels of interest]
302
- model_cfg : [str]
303
- [path of the model config file to use, specific to the checkpoint file]
304
- ckpt_file : [str]
305
- [path of the model checkpoint file to use for model inference]
306
- csv_save_folder : [str]
307
- [folder to save the generated csv files]
308
- device : str, optional
309
- [device to use for inference, option: "cuda" or "cpu"], by default "cuda"
310
- nms_threshold : float, optional
311
- [Non-maximum suppression threshold to use for the model inference, values between 0 to 1], by default 0.1
312
- confidence_threshold : float, optional
313
- [Confidence threshold to use for the model inference, values between 0 to 1], by default 0.7
314
- iou_threshold : float, optional
315
- [IOU threshold to use for identifying true positives from the predictions and ground truth], by default 0.4
316
- gt_statistics : bool, optional
317
- [option to generate the df_gt_analysis], by default True
318
-
319
- Returns
320
- -------
321
- df_full : [pandas.DataFrame]
322
- [dataframe containing the combined inference and ground truth information of the test images by image]
323
- df_gt_analysis : pandas.DataFrame, optional
324
- [dataframe containing the combined inference and ground truth information of the test images by ground truth]
325
- """
326
-
327
- print(f"NMS Threshold: {nms_threshold}")
328
- print(f"Confidence Threshold: {confidence_threshold}")
329
- print(f"IOU Threshold: {iou_threshold}")
330
-
331
- df_gt = get_gt_from_img_folder(
332
- csv_file, img_folder, xml_folder, names_file)
333
- print("Successful Generation of Ground Truth Information")
334
- df_predictions = generate_inference_from_img_folder(
335
- csv_file, model_cfg, img_folder, ckpt_file,
336
- nms_thresh=nms_threshold, conf_thresh=confidence_threshold, device=device)
337
- print("Successful Generation of Inference")
338
-
339
- df_all = pd.merge(df_gt, df_predictions, how='left', on=["image_file_path", "image_file_name"])
340
- print("Successful Merging")
341
-
342
- class_labels_list = []
343
- with open(names_file) as f:
344
- for index,line in enumerate(f):
345
- class_labels = line.splitlines()[0]
346
- class_labels_list.append(class_labels)
347
-
348
- combined_info_list = []
349
- for _,rows in df_all.iterrows():
350
- img_file = rows["image_file_name"]
351
- predicted_boxes = rows["predicted_boxes"]
352
- predicted_labels = rows["predicted_labels"]
353
- predicted_confidence = rows["predicted_confidence"]
354
- gt_boxes = rows["gt_boxes"]
355
- gt_labels = rows["gt_labels"]
356
- cm_gt_list = rows["cm_gt_list"]
357
- cm_detections_list = rows["cm_detections_list"]
358
-
359
- if rows["number_of_predictions"] == 0:
360
- # Ground Truth Analysis
361
- gt_summary_list = []
362
- gt_match_list = []
363
- gt_match_idx_list = []
364
- gt_match_idx_conf_list = []
365
- gt_match_idx_bb_list = []
366
- for idx in range(len(gt_labels)):
367
- gt_summary = "NO"
368
- match = ["GT", idx, "-"]
369
- match_idx = "-"
370
- match_bb = "-"
371
- gt_summary_list.append(gt_summary)
372
- gt_match_list.append(tuple(match))
373
- gt_match_idx_list.append(match_idx)
374
- gt_match_idx_conf_list.append(match_idx)
375
- gt_match_idx_bb_list.append(match_bb)
376
-
377
- combined_info = {
378
- "image_file_name": img_file,
379
- "number_of_predictions_conf": [],
380
- "predicted_labels_conf": [],
381
- "predicted_confidence_conf": [],
382
- "num_matches": [],
383
- "num_mismatch": [],
384
- "labels_hit": [],
385
- "pairs_mislabel_gt_prediction": [],
386
- "gt_match_idx_list": gt_match_idx_list,
387
- "gt_match_idx_conf_list": gt_match_idx_conf_list,
388
- "gt_match_idx_bb_list": gt_match_idx_bb_list,
389
- "prediction_match": [],
390
- "gt_analysis": gt_summary_list,
391
- "prediction_analysis": [],
392
- "gt_match": gt_match_list
393
- }
394
-
395
- else:
396
-
397
- # Generate Confusion Matrix with their corresponding matches
398
- CM = ConfusionMatrix(
399
- num_classes=len(class_labels_list)+1,
400
- CONF_THRESHOLD = confidence_threshold,
401
- IOU_THRESHOLD = iou_threshold)
402
-
403
- matching_boxes = CM.process_batch(
404
- detections=np.asarray(cm_detections_list),
405
- labels=np.asarray(cm_gt_list),
406
- return_matches=True)
407
-
408
- predicted_confidence_count = len([confidence for confidence in predicted_confidence if confidence > confidence_threshold])
409
- predicted_confidence_round = [round(confidence, 4) for confidence in predicted_confidence]
410
-
411
- predicted_confidence_conf = predicted_confidence_round[:predicted_confidence_count]
412
- predicted_labels_conf = predicted_labels[:predicted_confidence_count]
413
- predicted_boxes_conf = predicted_boxes[:predicted_confidence_count]
414
-
415
- number_of_predictions_conf = len(predicted_labels_conf)
416
-
417
- match_correct_list = []
418
- match_wrong_list = []
419
- gt_matched_idx_dict = {}
420
- predicted_matched_idx_dict = {}
421
- gt_mismatch_idx_dict = {}
422
- predicted_mismatch_idx_dict = {}
423
- labels_hit = []
424
- pairs_mislabel_gt_prediction = []
425
-
426
- for match in matching_boxes:
427
- gt_idx = int(match[0])
428
- predicted_idx = int(match[1])
429
- iou = round(match[2], 4)
430
- match = [gt_idx, predicted_idx, iou]
431
-
432
- if gt_labels[gt_idx] == predicted_labels_conf[predicted_idx]:
433
- match_correct_list.append(match)
434
- gt_matched_idx_dict[gt_idx] = match
435
- predicted_matched_idx_dict[predicted_idx] = match
436
- labels_hit.append(gt_labels[gt_idx])
437
- else:
438
- match_wrong_list.append(match)
439
- gt_mismatch_idx_dict[gt_idx] = match
440
- predicted_mismatch_idx_dict[predicted_idx] = match
441
- pairs_mislabel_gt_prediction.append(
442
- [gt_labels[gt_idx],predicted_labels_conf[predicted_idx]])
443
-
444
- # Ground Truth Analysis
445
- gt_summary_list = []
446
- gt_match_list = []
447
- gt_match_idx_list = []
448
- gt_match_idx_conf_list = []
449
- gt_match_idx_bb_list = []
450
- for idx in range(len(gt_labels)):
451
- if idx in gt_matched_idx_dict.keys():
452
- gt_summary = "MATCH"
453
- match = gt_matched_idx_dict[idx]
454
- match_idx = predicted_labels_conf[match[1]]
455
- match_conf = predicted_confidence_conf[match[1]]
456
- match_bb = predicted_boxes_conf[match[1]]
457
- elif idx in gt_mismatch_idx_dict.keys():
458
- gt_summary = "MISMATCH"
459
- match = gt_mismatch_idx_dict[idx]
460
- match_idx = predicted_labels_conf[match[1]]
461
- match_conf = predicted_confidence_conf[match[1]]
462
- match_bb = predicted_boxes_conf[match[1]]
463
- else:
464
- gt_summary = "NO"
465
- match = ["GT", idx, "-"]
466
- match_idx = "-"
467
- match_conf = "-"
468
- match_bb = "-"
469
- gt_summary_list.append(gt_summary)
470
- gt_match_list.append(tuple(match))
471
- gt_match_idx_list.append(match_idx)
472
- gt_match_idx_conf_list.append(match_conf)
473
- gt_match_idx_bb_list.append(match_bb)
474
-
475
- # Prediction Analysis
476
- prediction_summary_list = []
477
- prediction_match_list = []
478
- for idx in range(len(predicted_labels_conf)):
479
- if idx in predicted_matched_idx_dict.keys():
480
- prediction_summary = "MATCH"
481
- match = predicted_matched_idx_dict[idx]
482
- elif idx in predicted_mismatch_idx_dict.keys():
483
- prediction_summary = "MISMATCH"
484
- match = predicted_mismatch_idx_dict[idx]
485
- else:
486
- prediction_summary = "NO"
487
- match = [idx, "P", "-"]
488
- prediction_summary_list.append(prediction_summary)
489
- prediction_match_list.append(tuple(match))
490
-
491
- combined_info = {
492
- "image_file_name": img_file,
493
- "number_of_predictions_conf": number_of_predictions_conf,
494
- "predicted_labels_conf": predicted_labels_conf,
495
- "predicted_confidence_conf": predicted_confidence_conf,
496
- "num_matches": len(match_correct_list),
497
- "num_mismatch": len(match_wrong_list),
498
- "labels_hit": labels_hit,
499
- "pairs_mislabel_gt_prediction": pairs_mislabel_gt_prediction,
500
- "gt_match_idx_list": gt_match_idx_list,
501
- "gt_match_idx_conf_list": gt_match_idx_conf_list,
502
- "gt_match_idx_bb_list": gt_match_idx_bb_list,
503
- "gt_match": gt_match_list,
504
- "prediction_match": prediction_match_list,
505
- "gt_analysis": gt_summary_list,
506
- "prediction_analysis": prediction_summary_list
507
- }
508
-
509
- combined_info_list.append(combined_info)
510
-
511
- df_combined = pd.DataFrame(combined_info_list)
512
-
513
- df_full = pd.merge(df_all, df_combined , how='left', on=["image_file_name"])
514
-
515
- csv_path_combined = f"{csv_save_folder}df_inference_details_nms_{nms_threshold}_conf_{confidence_threshold}_iou_{iou_threshold}.csv"
516
-
517
- df_full.to_csv(csv_path_combined, index=False)
518
- print ("Dataframe saved as csv to " + csv_path_combined)
519
-
520
- if gt_statistics:
521
- print("Generating Statistics for Single Ground Truth")
522
- csv_path_gt = f"{csv_save_folder}df_gt_details_nms_{nms_threshold}_conf_{confidence_threshold}_iou_{iou_threshold}.csv"
523
- df_gt_analysis = __get_single_gt_analysis(csv_output=csv_path_gt, df_input=df_full)
524
-
525
- return df_full, df_gt_analysis
526
-
527
- else:
528
- return df_full
529
-
530
- def __get_single_gt_analysis(csv_output, df_input=None,csv_input=None):
531
-
532
- if df_input is None:
533
- df_gt = pd.read_csv(csv_input)
534
-
535
- # Apply literal eval of columns containing information on Ground Truth
536
- df_gt.gt_labels = df_gt.gt_labels.apply(literal_eval)
537
- df_gt.gt_boxes = df_gt.gt_boxes.apply(literal_eval)
538
- df_gt.gt_boxes_int = df_gt.gt_boxes_int.apply(literal_eval)
539
- df_gt.gt_area_list = df_gt.gt_area_list.apply(literal_eval)
540
- df_gt.gt_area_type = df_gt.gt_area_type.apply(literal_eval)
541
- df_gt.truncated_list = df_gt.truncated_list.apply(literal_eval)
542
- df_gt.occluded_list = df_gt.occluded_list.apply(literal_eval)
543
- df_gt.gt_match_idx_list = df_gt.gt_match_idx_list.apply(literal_eval)
544
- df_gt.gt_match_idx_conf_list = df_gt.gt_match_idx_conf_list.apply(literal_eval)
545
- df_gt.gt_match_idx_bb_list = df_gt.gt_match_idx_bb_list.apply(literal_eval)
546
- df_gt.gt_match = df_gt.gt_match.apply(literal_eval)
547
- df_gt.gt_analysis = df_gt.gt_analysis.apply(literal_eval)
548
-
549
- else:
550
- df_gt = df_input
551
-
552
- gt_info_list = []
553
- for _,rows in df_gt.iterrows():
554
- # print(rows["image_file_name"])
555
- for idx in range(rows["number_of_gt"]):
556
- df_gt_image_dict = {
557
- "GT_Image": rows["image_file_name"],
558
- "GT_Label": rows["gt_labels"][idx],
559
- "GT_Boxes": rows["gt_boxes"][idx],
560
- "GT_Boxes_Int": rows["gt_boxes_int"][idx],
561
- "GT_Area": rows["gt_area_list"][idx],
562
- "GT_Area_Type": rows["gt_area_type"][idx],
563
- "Truncated": rows["truncated_list"][idx],
564
- "Occluded": rows["occluded_list"][idx],
565
- "GT_Match": rows["gt_match"][idx],
566
- "IOU": rows["gt_match"][idx][2],
567
- "GT_Match_IDX": rows["gt_match_idx_list"][idx],
568
- "GT_Confidence_IDX": rows["gt_match_idx_conf_list"][idx],
569
- "GT_Predicted_Boxes_IDX": rows["gt_match_idx_bb_list"][idx],
570
- "GT_Analysis": rows["gt_analysis"][idx]
571
- }
572
- gt_info_list.append(df_gt_image_dict)
573
-
574
- df_final = pd.DataFrame(gt_info_list)
575
- df_final = df_final.reset_index(drop=True)
576
-
577
- df_final.to_csv(csv_output, index=False)
578
- print ("Dataframe saved as csv to " + csv_output)
579
-
580
- return df_final
581
-
582
- if __name__ == '__main__':
583
-
584
- combine_gt_predictions(
585
- csv_file="/polyaxon-data/workspace/stee/voc_image_annotations_batch123.csv",
586
- img_folder="/polyaxon-data/workspace/stee/data_batch123",
587
- xml_folder="/polyaxon-data/workspace/stee/data_batch123/Annotations/",
588
- names_file="/polyaxon-data/workspace/stee/data_batch123/obj.names",
589
- model_cfg="cfg/cfg_frcn.ini",
590
- ckpt_file="/polyaxon-data/workspace/stee/andy/epoch=99-step=61899.ckpt",
591
- csv_save_folder="/polyaxon-data/workspace/stee/andy/generation/",
592
- nms_threshold=0.9,
593
- confidence_threshold=0.3,
594
- iou_threshold=0.4,
595
- gt_statistics=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/st_image_tools.py CHANGED
@@ -279,7 +279,7 @@ class ImageTool:
279
  masked_img = np.where(pred_mask[...,None], colour, img_pred)
280
  masked_img = masked_img.astype(np.uint8)
281
 
282
- img_pred = cv2.addWeighted(img_pred, 0.8, masked_img, 0.2, 0)
283
 
284
  def put_text_ina_mask(output, img):
285
 
@@ -319,7 +319,7 @@ class ImageTool:
319
 
320
  return img
321
 
322
- img_gt = cv2.addWeighted(img_gt, 0.8, masked_img, 0.2,0)
323
 
324
  for output in gt_outputs:
325
  img_gt = put_text_ina_mask(output, img_gt)
 
279
  masked_img = np.where(pred_mask[...,None], colour, img_pred)
280
  masked_img = masked_img.astype(np.uint8)
281
 
282
+ img_pred = cv2.addWeighted(img_pred, 0.7, masked_img, 0.3, 0)
283
 
284
  def put_text_ina_mask(output, img):
285
 
 
319
 
320
  return img
321
 
322
+ img_gt = cv2.addWeighted(img_gt, 0.7, masked_img, 0.3,0)
323
 
324
  for output in gt_outputs:
325
  img_gt = put_text_ina_mask(output, img_gt)