Taqi Javed
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Load the English-to-Urdu translation model from Hugging Face
|
5 |
+
model_name = "Helsinki-NLP/opus-mt-en-ur"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
8 |
+
|
9 |
+
def translate_english_to_urdu(text):
|
10 |
+
"""Translate input English text to Urdu."""
|
11 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
12 |
+
output_tokens = model.generate(**inputs)
|
13 |
+
translated_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
14 |
+
return translated_text
|
15 |
+
|
16 |
+
# Gradio UI
|
17 |
+
with gr.Blocks() as demo:
|
18 |
+
gr.Markdown("<h1 align='center'>🌍 English to Urdu Translator</h1>")
|
19 |
+
|
20 |
+
with gr.Row():
|
21 |
+
input_text = gr.Textbox(label="Enter English Text", placeholder="Type here...")
|
22 |
+
output_text = gr.Textbox(label="Translated Urdu Text", interactive=False)
|
23 |
+
|
24 |
+
translate_button = gr.Button("Translate")
|
25 |
+
|
26 |
+
translate_button.click(translate_english_to_urdu, inputs=input_text, outputs=output_text)
|
27 |
+
|
28 |
+
# Launch the app
|
29 |
+
demo.launch()
|