cindyy3 commited on
Commit
f771594
·
verified ·
1 Parent(s): 756a809

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +79 -100
app.py CHANGED
@@ -2,115 +2,94 @@ import gradio as gr
2
  from sentence_transformers import SentenceTransformer, util
3
  import openai
4
  import os
5
- import pandas as pd
6
-
7
  os.environ["TOKENIZERS_PARALLELISM"] = "false"
8
-
9
- # Initialize paths and model identifiers
10
- filename = "output_topic_details.txt"
11
  retrieval_model_name = 'output/sentence-transformer-finetuned/'
12
-
13
  openai.api_key = os.environ["OPENAI_API_KEY"]
14
-
15
- system_message = (
16
- "You are a restaurant recommending chatbot that takes details about a restaurant including type of restaurant, "
17
- "dietary restrictions, and budget and chooses a restaurant in Seattle which best fits the user's criteria. "
18
- "Then you output the restaurant name and website link."
19
- )
20
  messages = [{"role": "system", "content": system_message}]
21
-
22
- # Load the data into a DataFrame for easier querying
23
- def load_and_preprocess_data(filename):
 
 
 
 
 
 
 
24
  try:
25
  with open(filename, 'r', encoding='utf-8') as file:
26
- data = file.read()
27
- # Split into sections based on "Topic:" and then split into lines
28
- sections = data.split("Topic: ")
29
- restaurant_data = []
30
-
31
- for section in sections[1:]:
32
- lines = section.strip().split("\n")
33
- topic = lines[0]
34
- description = "\n".join(lines[1:])
35
- if topic == "Details about Restaurants":
36
- lines = description.split("\n")
37
- # Convert to a DataFrame
38
- df = pd.DataFrame([line.split(",") for line in lines[1:]], columns=lines[0].split(","))
39
- restaurant_data.append(df)
40
-
41
- # Concatenate all DataFrames into one
42
- full_df = pd.concat(restaurant_data, ignore_index=True)
43
- full_df.columns = full_df.columns.str.strip() # Strip any extra whitespace from column names
44
- print("Data loaded and preprocessed successfully.")
45
- return full_df
46
  except Exception as e:
47
- print(f"Failed to load or preprocess data: {e}")
48
- return pd.DataFrame()
49
-
50
- data_df = load_and_preprocess_data(filename)
51
-
52
- def filter_restaurants(cuisine=None, dietary_restrictions=None, budget=None):
53
- df_filtered = data_df
54
-
55
- if cuisine:
56
- df_filtered = df_filtered[df_filtered['Type of Restaurant'].str.contains(cuisine, case=False, na=False)]
57
- if dietary_restrictions:
58
- for restriction in dietary_restrictions:
59
- df_filtered = df_filtered[df_filtered[restriction].str.contains('Yes', case=False, na=False)]
60
- if budget:
61
- df_filtered = df_filtered[df_filtered['Price'].str.contains(budget, case=False, na=False)]
62
-
63
- if df_filtered.empty:
64
- return "No matching restaurants found."
65
-
66
- # Convert DataFrame to a list of dictionaries for easier handling
67
- restaurants = df_filtered[['Restaurant', 'Website']].to_dict(orient='records')
68
- return restaurants
69
-
70
- def generate_response(user_query):
71
- # Example of parsing the query for simplicity
72
- # You might want to use more sophisticated parsing and NLP for better results
73
- # Dummy parsing based on example query format
74
- cuisine = None
75
- dietary_restrictions = []
76
- budget = None
77
-
78
- if 'gluten-free' in user_query.lower():
79
- dietary_restrictions.append('Gluten-free Options?')
80
- if 'vegan' in user_query.lower():
81
- dietary_restrictions.append('Vegan Options?')
82
- if 'lactose-intolerant' in user_query.lower():
83
- dietary_restrictions.append('Lactose-Intolerant Options?')
84
- if 'pescatarian' in user_query.lower():
85
- dietary_restrictions.append('Pescatarian Options?')
86
-
87
- if 'low' in user_query.lower():
88
- budget = 'Low'
89
- elif 'moderate' in user_query.lower():
90
- budget = 'Moderate'
91
- elif 'high' in user_query.lower():
92
- budget = 'High'
93
-
94
- # Handle cuisine extraction if needed
95
-
96
- results = filter_restaurants(cuisine=cuisine, dietary_restrictions=dietary_restrictions, budget=budget)
97
- if isinstance(results, str): # If no restaurants found
98
- return results
99
-
100
- response = "\n".join([f"{r['Restaurant']}: {r['Website']}" for r in results])
101
- return response
102
-
103
  def query_model(question):
 
 
 
104
  if question == "":
105
- return "Please provide your restaurant preferences."
106
- response = generate_response(question)
 
 
 
107
  return response
108
-
109
  welcome_message = """
110
  # Welcome to Ethical Eats Explorer!
111
- ## Your AI-driven assistant for restaurant recs in Seattle. Created by Saranya, Cindy, and Liana of the 2024 Kode With Klossy Seattle Camp.
112
  """
113
-
114
  topics = """
115
  ### Please give me your restaurant preferences:
116
  - Dietary Restrictions
@@ -119,17 +98,17 @@ topics = """
119
  - Budget Preferences (Low: $0 - $20, Moderate: $20 - $30, High: $30+ - per person)
120
  Please send your message in the format: "Could you give me a (cuisine) restaurant with (dietary restriction) options that is (budget) budget?"
121
  """
122
-
123
  with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
124
- gr.Markdown(welcome_message)
125
  with gr.Row():
126
  with gr.Column():
127
- gr.Markdown(topics)
128
  with gr.Row():
129
  with gr.Column():
130
  question = gr.Textbox(label="Your question", placeholder="Give me your information...")
131
  answer = gr.Textbox(label="Explorer's Response", placeholder="Explorer will respond here...", interactive=False, lines=10)
132
  submit_button = gr.Button("Submit")
133
  submit_button.click(fn=query_model, inputs=question, outputs=answer)
134
-
135
  demo.launch(share=True)
 
2
  from sentence_transformers import SentenceTransformer, util
3
  import openai
4
  import os
 
 
5
  os.environ["TOKENIZERS_PARALLELISM"] = "false"
6
+ # Initialize paths and model identifiers for easy configuration and maintenance
7
+ filename = "output_topic_details.txt" # Path to the file storing chess-specific details
 
8
  retrieval_model_name = 'output/sentence-transformer-finetuned/'
 
9
  openai.api_key = os.environ["OPENAI_API_KEY"]
10
+ system_message = "You are a restaurant recommending chatbot that suggests one restaurant based on the criteria the user provides."
11
+ # Initial system message to set the behavior of the assistant
 
 
 
 
12
  messages = [{"role": "system", "content": system_message}]
13
+ # Attempt to load the necessary models and provide feedback on success or failure
14
+ try:
15
+ retrieval_model = SentenceTransformer(retrieval_model_name)
16
+ print("Models loaded successfully.")
17
+ except Exception as e:
18
+ print(f"Failed to load models: {e}")
19
+ def load_and_preprocess_text(filename):
20
+ """
21
+ Load and preprocess text from a file, removing empty lines and stripping whitespace.
22
+ """
23
  try:
24
  with open(filename, 'r', encoding='utf-8') as file:
25
+ segments = [line.strip() for line in file if line.strip()]
26
+ print("Text loaded and preprocessed successfully.")
27
+ return segments
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  except Exception as e:
29
+ print(f"Failed to load or preprocess text: {e}")
30
+ return []
31
+ segments = load_and_preprocess_text(filename)
32
+ def find_relevant_segment(user_query, segments):
33
+ """
34
+ Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
35
+ This version finds the best match based on the content of the query.
36
+ """
37
+ try:
38
+ # Lowercase the query for better matching
39
+ lower_query = user_query.lower()
40
+ # Encode the query and the segments
41
+ query_embedding = retrieval_model.encode(lower_query)
42
+ segment_embeddings = retrieval_model.encode(segments)
43
+ # Compute cosine similarities between the query and the segments
44
+ similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
45
+ # Find the index of the most similar segment
46
+ best_idx = similarities.argmax()
47
+ # Return the most relevant segment
48
+ return segments[best_idx]
49
+ except Exception as e:
50
+ print(f"Error in finding relevant segment: {e}")
51
+ return ""
52
+ def generate_response(user_query, relevant_segment):
53
+ """
54
+ Generate a response emphasizing the bot's capability in suggesting a restaurant.
55
+ """
56
+ try:
57
+ user_message = f"Here is a local restaurant based on your information: {relevant_segment}"
58
+ # Append user's message to messages list
59
+ messages.append({"role": "user", "content": user_message})
60
+ response = openai.ChatCompletion.create(
61
+ model="gpt-4o",
62
+ messages=messages,
63
+ max_tokens=150,
64
+ temperature=0.2,
65
+ top_p=1,
66
+ frequency_penalty=0,
67
+ presence_penalty=0
68
+ )
69
+ # Extract the response text
70
+ output_text = response['choices'][0]['message']['content'].strip()
71
+ # Append assistant's message to messages list for context
72
+ messages.append({"role": "assistant", "content": output_text})
73
+ return output_text
74
+ except Exception as e:
75
+ print(f"Error in generating response: {e}")
76
+ return f"Error in generating response: {e}"
 
 
 
 
 
 
 
 
77
  def query_model(question):
78
+ """
79
+ Process a question, find relevant information, and generate a response.
80
+ """
81
  if question == "":
82
+ return "Give me your preferences..."
83
+ relevant_segment = find_relevant_segment(question, segments)
84
+ if not relevant_segment:
85
+ return "Could not find specific information. Please refine your question."
86
+ response = generate_response(question, relevant_segment)
87
  return response
88
+ # Define the welcome message and specific topics the chatbot can provide information about
89
  welcome_message = """
90
  # Welcome to Ethical Eats Explorer!
91
+ ## Your AI-driven assistant for restaurant recs in Seattle. Created by Saranya, Cindy, and Liana of the 2024 Kode With Klossy Seattle Camp.
92
  """
 
93
  topics = """
94
  ### Please give me your restaurant preferences:
95
  - Dietary Restrictions
 
98
  - Budget Preferences (Low: $0 - $20, Moderate: $20 - $30, High: $30+ - per person)
99
  Please send your message in the format: "Could you give me a (cuisine) restaurant with (dietary restriction) options that is (budget) budget?"
100
  """
101
+ # Setup the Gradio Blocks interface with custom layout components
102
  with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
103
+ gr.Markdown(welcome_message) # Display the formatted welcome message
104
  with gr.Row():
105
  with gr.Column():
106
+ gr.Markdown(topics) # Show the topics on the left side
107
  with gr.Row():
108
  with gr.Column():
109
  question = gr.Textbox(label="Your question", placeholder="Give me your information...")
110
  answer = gr.Textbox(label="Explorer's Response", placeholder="Explorer will respond here...", interactive=False, lines=10)
111
  submit_button = gr.Button("Submit")
112
  submit_button.click(fn=query_model, inputs=question, outputs=answer)
113
+ # Launch the Gradio app to allow user interaction
114
  demo.launch(share=True)